Vol. 108
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-11
Light Trapping for Absorption Control in Perovskite-Based Photovoltaic Solar Cells
By
Progress In Electromagnetics Research Letters, Vol. 108, 41-48, 2023
Abstract
Nanostructure based perovskite solar cell with high performance is the emphasis of study in current work keeping in view the improvement in cell efficiency. In the first part of the study, a plane-layered solar cell is studied by adding a 1D photonic crystal at the bottom of the cell in order to facilitate the photon rotation process. However, in the second part of the study, it is observed that addition of grating enhances the light absorption due to photons trapping. Following that, the light absorption of three different structures is compared. The observations reveal that short-circuit current density (Jsc) is found to be -39.93 mA/cm2, which is 87.29% higher than that for a planar structure exhibiting the Jsc value as -21.32 mA/cm2. Ultimately, the efficiencies of these perovskite solar cells based on nanostructures are observed to be significant as well. For the proposed solar cell structure, an 87.24% improvement in the power conversion efficiency (PCE) is observed i.e., from 14.03% for the planar structure to 26.27%.
Citation
Maroua Chahmi, Mounir Bouras, Moufdi Hadjab, and Mohammad Alam Saeed, "Light Trapping for Absorption Control in Perovskite-Based Photovoltaic Solar Cells," Progress In Electromagnetics Research Letters, Vol. 108, 41-48, 2023.
doi:10.2528/PIERL22110505
References

1. Service, R. F., "Perovskite solar cells keep on surging," Science, Vol. 344, 458-458, 2014.
doi:10.1126/science.344.6183.458

2. McGehee, M. D., "Fast-track solar cells," Nature, Vol. 501, 323-325, 2013.
doi:10.1038/nature12557

3. Kojima, A., K. Teshima, Y. Shirai, and T. O. Miyasaka, "Halide perovskites as visible-light sensitizers for photovoltaic cells," J. Am. Chem. Soc., Vol. 131, 6050-6051, 2009.
doi:10.1021/ja809598r

4. Nie, W., et al. "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, Vol. 347, 522-525, 2015.
doi:10.1126/science.aaa0472

5. Rühle, S., "Tabulated values of the Shockley-Queisser limit for single junction solar cells," Sol. Energy, 2016.

6. Zhou, H., et al. "Interface engineering of highly efficient perovskite solar cells," Science, Vol. 345, 542-546, 2014.
doi:10.1126/science.1254050

7. Green, M. A., K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 45)," Prog. Photovoltaics Res. Appl., Vol. 23, 1-9, 2015.
doi:10.1002/pip.2573

8. Malinkiewicz, O., et al. "Perovskite solar cells employing organic charge-transport layers," Nature Photon., Vol. 8, 128-132, 2014.
doi:10.1038/nphoton.2013.341

9. Docampo, P., J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Commun., Vol. 4, 2761, 2013.
doi:10.1038/ncomms3761

10. Shah, A. V., et al. "Thin-film solar cell technology," Progr. Photovolt. Res. Appl., Vol. 12, 113-142, 2004.
doi:10.1002/pip.533

11. Yu, Z., A. Raman, and S. Fan, PNAS, Vol. 107, No. 41, 17491-17496, 2010, DOI: 10.1073/pnas.1008296107.

12. Tang, Z., W. Tress, and O. Inganäs, Mater Today, Vol. 17, No. 8, 389-396, 2014, DOI: 10.1016/j.mattod.2014.05.008.

13. Nelson, J., The Physics of Solar Cell, Imperial College Press, United Kingdom, London, 2008, DOI: 10.1142/p276.

14. Sathya, P. and R. Natarajan, Int. J. Energy Res., Vol. 41, 1211-1222, DOI: 10.1002/er.3708.

15. Shuba, M. V., et al. J. Opt. Soc. Am. A, Vol. 32, 1222-1230, 2015, DOI: 10.1364/JOSAA.32.001222.
doi:10.1364/JOSAA.32.001222

16. Gabriel, C., Optics And Optoelectronics, Vol. 19, 2021, DOI:10.15598/aeee.v19i2.4140.

17. Bhatnagar, A. and V. Janyani, IEEE International Conference on Computer, Communications and Electronics, 516-520, Jaipur, 2017.

18. Scholtz, L., L. Ladanyi, and J. Mullerova, Applied Physics, Vol. 12, 2014, DOI: 10.15598/aeee.v12i6.1078.

19. Abdelraouf, O. A. and N. K. Allam, Sol. Energy, Vol. 137, 364-370, 2016, https://doi.org/10.1016/j.solener.2016.08.039.
doi:10.1016/j.solener.2016.08.039

20. Abdelraouf, O. A., A. Shaker, and N. K. Allam, Opt. Mater., Vol. 86, 311-317, 2018, https://doi.org/10.1016/j.optmat.2018.10.028.
doi:10.1016/j.optmat.2018.10.028

21. Bendib, T., H. Bencherif, and M. A. Abdi, "Combined optical-electrical modeling of perovskite solar cell with an optimized design," Optical Materials, Vol. 109, 110259, 2020, doi.org/10.1016/j.optmat.2020.110259.
doi:10.1016/j.optmat.2020.110259

22. Hajjiah, A., H. Badran, and I. Kandas, Energies, Vol. 13, 3854, 2020, doi:10.3390/en13153854.
doi:10.3390/en13153854

23. Bhatnagar, A. and V. Janyani, Advanced Materials Letters, Vol. 9, No. 10, 721-726, 2018, DOI: 10.5185/amlett.2018.2108.