1. Service, R. F., "Perovskite solar cells keep on surging," Science, Vol. 344, 458-458, 2014.
doi:10.1126/science.344.6183.458
2. McGehee, M. D., "Fast-track solar cells," Nature, Vol. 501, 323-325, 2013.
doi:10.1038/nature12557
3. Kojima, A., K. Teshima, Y. Shirai, and T. O. Miyasaka, "Halide perovskites as visible-light sensitizers for photovoltaic cells," J. Am. Chem. Soc., Vol. 131, 6050-6051, 2009.
doi:10.1021/ja809598r
4. Nie, W., et al. "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, Vol. 347, 522-525, 2015.
doi:10.1126/science.aaa0472
5. Rühle, S., "Tabulated values of the Shockley-Queisser limit for single junction solar cells," Sol. Energy, 2016.
6. Zhou, H., et al. "Interface engineering of highly efficient perovskite solar cells," Science, Vol. 345, 542-546, 2014.
doi:10.1126/science.1254050
7. Green, M. A., K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 45)," Prog. Photovoltaics Res. Appl., Vol. 23, 1-9, 2015.
doi:10.1002/pip.2573
8. Malinkiewicz, O., et al. "Perovskite solar cells employing organic charge-transport layers," Nature Photon., Vol. 8, 128-132, 2014.
doi:10.1038/nphoton.2013.341
9. Docampo, P., J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Commun., Vol. 4, 2761, 2013.
doi:10.1038/ncomms3761
10. Shah, A. V., et al. "Thin-film solar cell technology," Progr. Photovolt. Res. Appl., Vol. 12, 113-142, 2004.
doi:10.1002/pip.533
11. Yu, Z., A. Raman, and S. Fan, PNAS, Vol. 107, No. 41, 17491-17496, 2010, DOI: 10.1073/pnas.1008296107.
12. Tang, Z., W. Tress, and O. Inganäs, Mater Today, Vol. 17, No. 8, 389-396, 2014, DOI: 10.1016/j.mattod.2014.05.008.
13. Nelson, J., The Physics of Solar Cell, Imperial College Press, United Kingdom, London, 2008, DOI: 10.1142/p276.
14. Sathya, P. and R. Natarajan, Int. J. Energy Res., Vol. 41, 1211-1222, DOI: 10.1002/er.3708.
15. Shuba, M. V., et al. J. Opt. Soc. Am. A, Vol. 32, 1222-1230, 2015, DOI: 10.1364/JOSAA.32.001222.
doi:10.1364/JOSAA.32.001222
16. Gabriel, C., Optics And Optoelectronics, Vol. 19, 2021, DOI:10.15598/aeee.v19i2.4140.
17. Bhatnagar, A. and V. Janyani, IEEE International Conference on Computer, Communications and Electronics, 516-520, Jaipur, 2017.
18. Scholtz, L., L. Ladanyi, and J. Mullerova, Applied Physics, Vol. 12, 2014, DOI: 10.15598/aeee.v12i6.1078.
19. Abdelraouf, O. A. and N. K. Allam, Sol. Energy, Vol. 137, 364-370, 2016, https://doi.org/10.1016/j.solener.2016.08.039.
doi:10.1016/j.solener.2016.08.039
20. Abdelraouf, O. A., A. Shaker, and N. K. Allam, Opt. Mater., Vol. 86, 311-317, 2018, https://doi.org/10.1016/j.optmat.2018.10.028.
doi:10.1016/j.optmat.2018.10.028
21. Bendib, T., H. Bencherif, and M. A. Abdi, "Combined optical-electrical modeling of perovskite solar cell with an optimized design," Optical Materials, Vol. 109, 110259, 2020, doi.org/10.1016/j.optmat.2020.110259.
doi:10.1016/j.optmat.2020.110259
22. Hajjiah, A., H. Badran, and I. Kandas, Energies, Vol. 13, 3854, 2020, doi:10.3390/en13153854.
doi:10.3390/en13153854
23. Bhatnagar, A. and V. Janyani, Advanced Materials Letters, Vol. 9, No. 10, 721-726, 2018, DOI: 10.5185/amlett.2018.2108.