Vol. 108
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-06
SAR Reduction in Human Head Phantom Using Nanomaterial MIMO Antenna
By
Progress In Electromagnetics Research Letters, Vol. 108, 103-112, 2023
Abstract
This work aims for nonionizing radiation assessment to reduce Specific Absorption Rate (SAR) in the IEEE SAM phantom using MIMO antenna. The traditional copper material MIMO is designed with mode characteristics and validated for 2.4 GHz in this experiment. The MIMO antenna, when placed near SAM phantom and SAR, is estimated. Copper-based antennas are replaced by nanomaterial-based antennas, such as graphene, multi-walled carbon nanotube (MWCNT), and single walled carbon nanotube (SWCNT), to study SAR behavior. SAR is reduced using Nanomaterial based antenna in which SWCNT significantly reduces SAR up to 66 percent using Altair's Feldberechnung für Körper mit beliebiger Oberfläche (FEKO).
Citation
Jemima Priyadarshini Stephen, and Duraisamy Jude Hemanth, "SAR Reduction in Human Head Phantom Using Nanomaterial MIMO Antenna," Progress In Electromagnetics Research Letters, Vol. 108, 103-112, 2023.
doi:10.2528/PIERL22110905
References

1. Gholb, Y. El. and N. El Amrani El Idrissi, "5G Mobile Antennas: MIMO Implementation," 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-6, 2019, doi: 10.1109/WITS.2019.8723661.

2. Hardell, L., "World Health Organization, radiofrequency radiation and health --- A hard nut to crack (Review)," International journal of oncology, Vol. 51, No. 2, 405-413, 2017, doi:10.3892/IJO.2017.4046.
doi:10.3892/ijo.2017.4046

3. Zhang, J., A. Sumich, and G. Y. Wang, "Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function," Bioelectromagnetics, Vol. 38, No. 5, 329-338, 2017, doi.org/10.1002/BEM.22052.
doi:10.1002/bem.22052

4. Szász, O., G. P. Szigeti, and A. Szász, "Connections between the specific absorption rate and the local temperature," Open Journal of Biophysics, Vol. 6, 53-74, doi: 10.4236/OJBIPHY.2016.63007.

5. Priyadarshini, J. S. and D. J. Hemanth, "Investigation and reduction methods of specific absorption rate for biomedical applications: A survey," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, 21211, 2018, doi.org/10.1002/MMCE.21211.
doi:10.1002/mmce.21211

6. Khan, M. S., A.-D. Capobianco, S. M. Asif, A. Iftikhar, B. D. Braaten, and R. M. Shubair, "A properties comparison between copper and graphene-based UWB MIMO planar antennas," IEEE International Symposium on Antennas and Propagation (APSURSI ), 1767-1768, 2016, doi: 10.1109/APS.2016.7696590.

7. Gatte, M. T., P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, "The performance improvement of THz antenna via modeling and characterization of doped graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016, doi:10.2528/PIERM16050405.
doi:10.2528/PIERM16050405

8. Zhou, Y., Y. Bayram, F. Du, L. Dai, and J. L. Volakis, "Polymer-carbon nanotube sheets for conformal load bearing antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2169-2175, Jul. 2010, doi: 10.1109/TAP.2010.2048852.
doi:10.1109/TAP.2010.2048852

9. Arumugam, S., S. Manoharan, S. K. Palaniswamy, and S. Kumar, "Design and performance analysis of a compact quad-element UWB MIMO antenna for automotive communications," Electronics, Vol. 10, No. 18, 2184, 2021, doi.org/10.3390/electronics10182184.
doi:10.3390/electronics10182184

10. Lee, A., S. Hong, J. Kwon, and H. Choi, "SAR comparison of SAM phantom and anatomical head models for a typical bar-type phone model," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 5, 1281-1284, 2015, doi: 10.1109/TEMC.2015.2433314.
doi:10.1109/TEMC.2015.2433314

11. Hyde, T. H., B. S. M. Ali, and W. Sun, "Interpretation of small ring creep test data," The Journal of Strain Analysis for Engineering Design, Vol. 48, No. 4, 269-278, 2013, doi: 10.1177/0309324712468820.
doi:10.1177/0309324712468820

12. Clarke, S. and U. Jakobus, "Dielectric material modeling in the MoM-based code FEKO," IEEE Antennas and Propagation Magazine, Vol. 47, No. 5, 140-147, 2005, doi: 10.1109/MAP.2005.1599186.
doi:10.1109/MAP.2005.1599186

13. Chaudhary, S., A. Kumar, and B. M. Singh, "Use of graphene as a patch material in comparison to the copper and other carbon nanomaterials," IJETCAS, 12-38, 2013.

14. Mohanty, A. and B. R. Behera, "Characteristics mode analysis: A review of its concepts, recent trends, state-of-the-art developments and its interpretation with a fractal UWB MIMO antenna," Progress In Electromagnetics Research B, Vol. 92, 19-45, 2021, doi:10.2528/PIERB21020506.
doi:10.2528/PIERB21020506

15. Phonkitiphan, P., R. Kaewon, K. Pancharoen, P. Silapan, and O. Watcharakitchakorn, "Design of graphene-based annular ring microstrip antenna using short-pin technique for dual band applications," IJEETC, 2020.

16., https://www.altair.com/feko.

17. Jemima Priyadarshini, S. and D. Jude Hemanth, "Investigation of nanomaterial dipoles for SAR reduction in human head," Frequenz, Vol. 73, No. 5-6, 189-201, 2019, doi:10.1515/freq-2018-0220.
doi:10.1515/freq-2018-0220