Vol. 112
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-08-28
On the Propagation through Annular Core Optical Fiber Under dB Boundary Conditions
By
Progress In Electromagnetics Research Letters, Vol. 112, 59-65, 2023
Abstract
In this paper, we investigate the propagation behavior of electromagnetic waves through coaxial optical fiber bounded with DB-boundaries. For this purpose, an eigenvalue equation is derived by using suitable DB-boundary conditions to determine the allowed values of propagation constant β for each propagating mode. Moreover, we have analyzed the electric field and power distribution patterns through coaxial optical fiber for different propagating modes and dimensions, respectively. Our results show that small dimensional guide confinement remains maximum close to the lower interface of the guide, whereas, for larger dimensions, it shifts toward the upper interface. Investigations show that high power is confined by H12 mode compared to H11 mode, and, therefore, shows contrary behavior compared to commonly used fibers.
Citation
Muhammad Saqlain, Lway Faisal Abdulrazak, Muhammad Kashif, Talib A. Al-Sharify, Laith S. Ismail, and Muhammad Abuzar Baqir, "On the Propagation through Annular Core Optical Fiber Under dB Boundary Conditions," Progress In Electromagnetics Research Letters, Vol. 112, 59-65, 2023.
doi:10.2528/PIERL23040405
References

1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

2. Tretyakov, S., A. Sahvola, and L. Jylha, "Backward-wave regime and negative refraction in chiral composites," Phot. And Nanost., Vol. 3, No. 2-3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008

3. Chen, J., Y. Yang, and S. Zhung, "Observation of the inverse Doppler effect in negative index materials at optical frequencies," Nat. Photon., Vol. 5, 239-245, 2011.
doi:10.1038/nphoton.2011.17

4. Ginis, V., J. Danckaert, I. Veretennicoff, and P. Tassin, "Controlling Cherenkov radiation with transformation optical metamaterials," Phy. Rev. Lett., Vol. 113, 167402.1-4, 2014.

5. Christensen, J. and F. J. G. de Abajo, "Negative refraction and backward waves in layered acoustic metamaterial," Phy. Rev. B, Vol. 86, 024301.1-7, 2012.

6. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904.1-4, 2005.

7. Schuring, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

8. Zhu, H. and F. Semperlotti, "Metamaterial based embedded acoustic filters for structural applications," AIP Advances, Vol. 3, 092121.1-7, 2013.

9. Hummelt, J. S., S. M. Lewis, M. A. Shapiro, and R. J. Temkin, "Design of a metamaterial-based backward-wave oscillator," IEEE Transactions on Plasma Science, Vol. 42, 930-936, 2014.
doi:10.1109/TPS.2014.2309597

10. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788

11. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273

12. Baqir, M. A. and P. K. Choudhury, "Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 6, 783-793, 2013.
doi:10.1080/09205071.2013.786209

13. Lindell, I. V. and A. H. Sihvola, "General electromagnetic Boundary conditions involving normal field components," IEEE Anten. and Wire. Propag. Lett., Vol. 8, 877-880, 2009.
doi:10.1109/LAWP.2009.2028301

14. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. on Antenn. and Propag., Vol. 58, 1128-1135, 2010.
doi:10.1109/TAP.2010.2041149

15. Lindell, I. V. and A. H. Sihvola, "Circular waveguide with DB-boundary conditions," IEEE Trans. on Micro. Theo. and Tech., Vol. 58, No. 4, 903-909, 2010.
doi:10.1109/TMTT.2010.2042638

16. Zaluski, D., D. Muha, and S. Hrabar, "Experimental verification of metamaterial-based DB unit cell," ELMAR, Proceedings, 2012.

17. Zaluski, D., S. Hrabar, and D. Muha, "Practicle realization of DB metasurface," App. Phy. Lett., Vol. 104, 234106.1-234106.5, 2014.

18. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary conditions and its realization with anisotropic metamaterial," Phy. Rev. E, Vol. 79, 026604.1-7, 2009.

19. Baqir, M. A. and P. K. Choudhury, "Waves in coaxial optical fiber under DB-boundaries," Optik, Vol. 125, No. 12, 2950-2953, 2014.
doi:10.1016/j.ijleo.2013.12.006

20. Khalid, M., A. A. Syed, and Q. A. Naqvi, "Circular cylinder with D'B, DB' and D'B' boundary conditions placed in chiral and chiral nihility media," Int. J. App. Electromag. and Mech., Vol. 44, 59-68, 2014.

21. Hussain, A., S. A. Naqvi, A. Illahi, A. A. Syed, and Q. A. Naqvi, "Fields in fractional parallel plate DB waveguides," Progress In Electromagnetics Research, Vol. 125, 273-294, 2012.
doi:10.2528/PIER11120701

22. Hassan, M. H., M. J. Mughal, M. M. Ali, and Q. A. Naqvi, "Electromagnetic fields in a circular waveguide with DB-boundary conditions internally coated with chiral-nihility medium," Int. J. Applied Electromag. and Mechanics, Vol. 40, 27-35, 2012.

23. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions defined by a skewon-axion medium," IEEE Trans. on Anten. and Propag., Vol. 61, No. 2, 768-774, 2013.
doi:10.1109/TAP.2012.2223445

24. Zhang, B., H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloack with an active device inside," Phy. Rev. Lett., Vol. 100, 063904.1-4, 2008.

25. Yaghjian, A. D., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of sperical and cylinderical cloaks," Metamaterials, Vol. 4, 70-76, 2010.
doi:10.1016/j.metmat.2010.03.006

26. Iqbal, N. and P. K. Choudhury, "On the power distributions in elliptical and circular helically designed chiral nihility core optical fibers," Journal of Nanophotonics, Vol. 10, 016008.1-12, 2016.

27. Ghasemi, M. and P. K. Choudhury, "On the sustainment of optical power in twisted clad dielectric cylindrical fibers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 11, 1382-1391, 2013.
doi:10.1080/09205071.2013.809509