1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
2. Tretyakov, S., A. Sahvola, and L. Jylha, "Backward-wave regime and negative refraction in chiral composites," Phot. And Nanost., Vol. 3, No. 2-3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008 Google Scholar
3. Chen, J., Y. Yang, and S. Zhung, "Observation of the inverse Doppler effect in negative index materials at optical frequencies," Nat. Photon., Vol. 5, 239-245, 2011.
doi:10.1038/nphoton.2011.17 Google Scholar
4. Ginis, V., J. Danckaert, I. Veretennicoff, and P. Tassin, "Controlling Cherenkov radiation with transformation optical metamaterials," Phy. Rev. Lett., Vol. 113, 167402.1-4, 2014. Google Scholar
5. Christensen, J. and F. J. G. de Abajo, "Negative refraction and backward waves in layered acoustic metamaterial," Phy. Rev. B, Vol. 86, 024301.1-7, 2012. Google Scholar
6. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904.1-4, 2005. Google Scholar
7. Schuring, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
8. Zhu, H. and F. Semperlotti, "Metamaterial based embedded acoustic filters for structural applications," AIP Advances, Vol. 3, 092121.1-7, 2013. Google Scholar
9. Hummelt, J. S., S. M. Lewis, M. A. Shapiro, and R. J. Temkin, "Design of a metamaterial-based backward-wave oscillator," IEEE Transactions on Plasma Science, Vol. 42, 930-936, 2014.
doi:10.1109/TPS.2014.2309597 Google Scholar
10. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788 Google Scholar
11. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273 Google Scholar
12. Baqir, M. A. and P. K. Choudhury, "Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 6, 783-793, 2013.
doi:10.1080/09205071.2013.786209 Google Scholar
13. Lindell, I. V. and A. H. Sihvola, "General electromagnetic Boundary conditions involving normal field components," IEEE Anten. and Wire. Propag. Lett., Vol. 8, 877-880, 2009.
doi:10.1109/LAWP.2009.2028301 Google Scholar
14. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. on Antenn. and Propag., Vol. 58, 1128-1135, 2010.
doi:10.1109/TAP.2010.2041149 Google Scholar
15. Lindell, I. V. and A. H. Sihvola, "Circular waveguide with DB-boundary conditions," IEEE Trans. on Micro. Theo. and Tech., Vol. 58, No. 4, 903-909, 2010.
doi:10.1109/TMTT.2010.2042638 Google Scholar
16. Zaluski, D., D. Muha, and S. Hrabar, "Experimental verification of metamaterial-based DB unit cell," ELMAR, Proceedings, 2012. Google Scholar
17. Zaluski, D., S. Hrabar, and D. Muha, "Practicle realization of DB metasurface," App. Phy. Lett., Vol. 104, 234106.1-234106.5, 2014. Google Scholar
18. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary conditions and its realization with anisotropic metamaterial," Phy. Rev. E, Vol. 79, 026604.1-7, 2009. Google Scholar
19. Baqir, M. A. and P. K. Choudhury, "Waves in coaxial optical fiber under DB-boundaries," Optik, Vol. 125, No. 12, 2950-2953, 2014.
doi:10.1016/j.ijleo.2013.12.006 Google Scholar
20. Khalid, M., A. A. Syed, and Q. A. Naqvi, "Circular cylinder with D'B, DB' and D'B' boundary conditions placed in chiral and chiral nihility media," Int. J. App. Electromag. and Mech., Vol. 44, 59-68, 2014. Google Scholar
21. Hussain, A., S. A. Naqvi, A. Illahi, A. A. Syed, and Q. A. Naqvi, "Fields in fractional parallel plate DB waveguides," Progress In Electromagnetics Research, Vol. 125, 273-294, 2012.
doi:10.2528/PIER11120701 Google Scholar
22. Hassan, M. H., M. J. Mughal, M. M. Ali, and Q. A. Naqvi, "Electromagnetic fields in a circular waveguide with DB-boundary conditions internally coated with chiral-nihility medium," Int. J. Applied Electromag. and Mechanics, Vol. 40, 27-35, 2012. Google Scholar
23. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions defined by a skewon-axion medium," IEEE Trans. on Anten. and Propag., Vol. 61, No. 2, 768-774, 2013.
doi:10.1109/TAP.2012.2223445 Google Scholar
24. Zhang, B., H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloack with an active device inside," Phy. Rev. Lett., Vol. 100, 063904.1-4, 2008. Google Scholar
25. Yaghjian, A. D., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of sperical and cylinderical cloaks," Metamaterials, Vol. 4, 70-76, 2010.
doi:10.1016/j.metmat.2010.03.006 Google Scholar
26. Iqbal, N. and P. K. Choudhury, "On the power distributions in elliptical and circular helically designed chiral nihility core optical fibers," Journal of Nanophotonics, Vol. 10, 016008.1-12, 2016. Google Scholar
27. Ghasemi, M. and P. K. Choudhury, "On the sustainment of optical power in twisted clad dielectric cylindrical fibers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 11, 1382-1391, 2013.
doi:10.1080/09205071.2013.809509 Google Scholar