1. Federal Communications Commission "FCC opens 6 GHz band to Wi-Fi and other unlicensed uses,", https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses-0. Google Scholar
2. Lee, C. T., C. C. Wan, and S. W. Su, "Multi-laptop-antenna designs for 2.4/5/6 GHz WLAN and 5G NR77/78/79 operation," Proc. Int. Symposium on Antennas and Propagat., 421-422, Osaka, Japan, 2020. Google Scholar
3. Su, S. W., D. P. Yusuf, and F. H. Chu, "Conjoined, Wi-Fi 6E MIMO antennas for laptops," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021. Google Scholar
4. Su, S. W. and C. C. Wan, "Asymmetrical, self-isolated laptop antenna in the 2.4/5/6 GHz Wi-Fi 6E bands," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021. Google Scholar
5. Su, S. W., "Compact, small, chip-inductor-loaded Wi-Fi 6E monopole antenna," Proc. IEEE Int. Symposium on Antennas Propagat., 937-938, Singapore, 2021. Google Scholar
6. Sim, C. Y. D., et al., "A PIFA design with WLAN and Wi-Fi 6E band for laptop computer applications," Proc. IEEE Int. Symposium on Antennas Propagat., 1808-1809, Denvor, USA, 2022. Google Scholar
7. Su, S. W., "Miniaturized, Wi-Fi 6E notebook antenna using an in-series chip inductor," IEEE Int. Workshop on Electromagnetics, 168-169, Chiba, Japan, 2022. Google Scholar
8. Yusuf, D. P., F. H. Chu, and S. W. Su, "Ultra-wideband Wi-Fi 6E/5G NR antenna for laptop applications," Asia-Pacific Microw. Conf., 548-550, Yokohama, Japan, 2022.
doi:10.1109/LAWP.2022.3202697 Google Scholar
9. Sim, C. Y. D., J. Kulkarni, S. H. Wang, S. Y. Zheng, Z. H. Lin, and S. C. Chen, "Low-profile laptop antenna design for Wi-Fi 6E band," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 79-83, 2023. Google Scholar
10. Magray, M. I., S. W. Su, and D. P. Yusuf, "Electrically small, conformal Wi-Fi 6E antenna for compact laptop devices," Arabian J. Sci. Eng., 1-7, 2023.
doi:10.1155/2022/4553924 Google Scholar
11. Su, S. W., P. H. Juan, and F. S. Chang, "Conjoined, two-monopole antenna pair with decoupling inductor for Wi-Fi 6E notebook applications," Int. J. Antennas Propagat., Vol. 22, 1-8, 2022.
doi:10.2528/PIERL22080402 Google Scholar
12. Su, S. W. and P. H. Juan, "Miniaturized antenna pair for 2.4/5/6 GHz Wi-Fi 6E operation," Progress In Electromagnetics Research Letters, Vol. 107, 39-47, 2022.
doi:10.1109/LAWP.2023.3281457 Google Scholar
13. Juan, P. H. and S. W. Su, "EMC hybrid loop/monopole LDS antenna with three-sided ground walls for 2.4/5/6 GHz WLAN operation," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 1-5, 2023, early access.
doi:10.1109/MCOM.001.2000711 Google Scholar
14. Garcia-Rodriguez, A., D. Lopez-Perez, L. Galati-Giordano, and G. Geraci, "IEEE 802.11be: Wi-Fi 7 strikes back," IEEE Comm. Mag., Vol. 21, 102-108, 2021. Google Scholar
15. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microw. Conf., 1588-1591, Seoul, South Korea, 2003. Google Scholar
16. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.
doi:10.1109/TAP.2007.891845
17. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propagat., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.910505 Google Scholar
18. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propagat., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2010.2046832 Google Scholar
19. Park, J.-H., Y.-H. Ryu, and J.-H. Lee, "Mu-zero resonance antenna," IEEE Trans. Antennas Propagat., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2012.2194643 Google Scholar
20. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns," IEEE Trans. Antennas Propagat., Vol. 60, 2702-2710, 2012.
doi:10.1109/TAP.2013.2241717 Google Scholar
21. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A wideband MNG-TL dipole antenna with stable radiation patterns," IEEE Trans. Antennas Propagat., Vol. 61, 2418-2424, 2013.
doi:10.1109/ACCESS.2020.3013698 Google Scholar
22. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, et al. "A comprehensive survey of ``metamaterial transmission-line based antennas design challenges and applications"," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/MAP.2022.3201194 Google Scholar
23. Zhang, J., S. Yan, and G. A. E. Vandenbosh, "Composite right/left-handed transmission line metamaterial-inspired small antenna design: Topologies, reconfigurability, and applications," IEEE Antennas Propagat. Mag., Vol. 65, 71-78, 2023. Google Scholar
24. Bertin, G., B. Piovano, and R. Vallauri, "Metamaterial-inspired antennas for telecommunication applications," European Conf. Antennas Propagat. (EuCAP), 1-2, Prague, Czech Republic, 2012. Google Scholar
25. Suhas, D. and S. Bhattacharyya, "Compact dual-band CRLH metamaterial planar antenna in laptops for WLAN/WiMAX frequencies," IEEE Microw. Antennas Propagat. Conf. (MAPCON), 1037-1042, Bangalore, India, 2022. Google Scholar
26. Ansys HFSS, Ansys Inc., http://www.ansys.com/Products/Electronics/ANSYS-FSS. Google Scholar
27. SG 24-S, MVG, https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/sg-24. Google Scholar
28. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2016.