Vol. 113
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-08
Modeling and Design of CPW Spoof Surface Plasmon Polariton with Reduced Transversal Width
By
Progress In Electromagnetics Research Letters, Vol. 113, 1-6, 2023
Abstract
In this paper, equivalent circuit models are first presented for characterizing the CPW SSPPs with etched slot. The asymptotic frequency and dispersion are investigated based on the theoretical model. And the analyses reveal that both the asymptotic frequency and dispersion curve can be manipulated by changing the inductance brought by the etched slots and the capacitance of the loaded capacitors. To validate the propagation performance, the proposed SSPP structure was fabricated and tested. The experimental results are consistent with the theoretical analysis, indicating that the designed SSPP structure possesses excellent low-pass filtering characteristics. Compared with traditional SSPP structures, the proposed structure exhibits a much narrower transversal width and does not require mode-conversion structures.
Citation
Rui-Feng Cao, and Lin Li, "Modeling and Design of CPW Spoof Surface Plasmon Polariton with Reduced Transversal Width," Progress In Electromagnetics Research Letters, Vol. 113, 1-6, 2023.
doi:10.2528/PIERL23061205
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, Aug. 2003.
doi:10.1038/nature01937

2. Gao, X. and T. J. Cui, "Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications," Nanotechnol. Rev., Vol. 4, No. 3, 239-258, 2015.

3. Kianinejad, A., Z. N. Chen, and C.-W. Qiu, "Design and modeling of spoof surface plasmon modes- based microwave slow-wave transmission line," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 1817-1825, 2015.
doi:10.1109/TMTT.2015.2422694

4. Shen, S., B. Xue, M. Yu, and J. Xu, "A novel three-dimensional integratedspoof surface plasmon polaritons transmission line," IEEE Access, Vol. 7, 26900-26908, 2019.
doi:10.1109/ACCESS.2019.2901220

5. Li, J., J. Shi, K.-D. Xu, Y.-J. Guo, A. Zhang, and Q. Chen, "Spoof surface plasmon polaritons developed from coplanar waveguides in microwave frequencies," IEEE Photonics Technol. Lett., Vol. 32, No. 22, 1431-1434, 2020.
doi:10.1109/LPT.2020.3031065

6. Li, J., K.-D. Xu, J. Shi, Y.-J. Guo, and A. Zhang, "Spoof surface plasmon polariton waveguide with switchable notched band," IEEE Photonics Technol. Lett., Vol. 33, No. 20, 1147-1150, 2021.
doi:10.1109/LPT.2021.3109612

7. Wang, C.-M., W.-Q. Xu, L. Li, H. Liu, and Y. Kuang, "Capacitor-loaded coplanar waveguide spoof surface plasmon polariton with reduced transversal width," IEEE Photonics Technol. Lett., Vol. 35, No. 10, 557-560, 2023.
doi:10.1109/LPT.2023.3263855

8. Tang, X.-L., Q. Zhang, S. Hu, A. Kandwal, T. Guo, and Y. Chen, "Capacitor-loaded spoof surface plasmon for flexible dispersion control high-selectivity filtering," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 9, 806-808, 2017.
doi:10.1109/LMWC.2017.2734738

9. Shi, Z., Y. Shen, and S. Hu, "Spoof surface plasmon polariton transmission line with reduced line-width and enhanced field confinement," Int. J. RF Microw. Comput-Aid. Eng., Vol. 30, No. 8, e22276, 2020.