1. Pu, Y., H. Yang, L. Wang, Y. Zhao, R. Luo, and X. Xi, "Analysis and modeling of temporal variation properties for LF ground-wave propagation delay," IEEE Antennas Wireless Propagat. Lett., Vol. 18, No. 4, 641-645, 2019.
doi:10.1109/LAWP.2019.2900271 Google Scholar
2. Chen, C. H., L. Lin, T. Yeh, S. Wen, H. Yu, C. Yu, Y. Gao, P. Han, Y. Y. Sun, J. Y. Liu, C. H. Lin, C. C. Yang, C. M. Lin, H. H. Hsieh, and P. J. Lu, "Determination of epicenters before earthquakes utilizing far seismic and GNSS data: Insights from ground vibrations," Remote Sens., Vol. 12, No. 19, 3252, 2020.
doi:10.3390/rs12193252 Google Scholar
3. Qiu, L., Z. Yang, E. Wang, and B. Li, "Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation," Eng. Geol, 2020. Google Scholar
4. Niknan, K. and J. J. Simpson, "A review of grid-based, time-domain modeling of electromagnetic wave propagation involving the ionosphere," IEEE J. Multiscale Multiphys. Comput. Techn., Vol. 6, 214-228, 2021.
doi:10.1109/JMMCT.2021.3136128 Google Scholar
5. Nina, A., "Modelling of the electron density and total electron content in the quiet and solar x-ray flare perturbed ionospheric d-region based on remote sensing by VLF/LF signals," Remote Sens., Vol. 14, No. 1, 2021.
doi:10.3390/rs14010054 Google Scholar
6. B´erenger, J. P., "FDTD propagation of VLF-LF waves in the presence of ions in the earth ionosphere waveguide," Ann. Telecommun., Vol. 75, No. 18, 437-446, 2020.
doi:10.1007/s12243-020-00756-5 Google Scholar
7. Gu, T., L. Xu, and K. Li, "Mode interferences of VLF waves in an anisotropic waveguide due to sunrise and sunset," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7255-7264, 2018.
doi:10.1109/TAP.2018.2870347 Google Scholar
8. Wang, J. C. H., "Seasonal variation of LF/MF sky-wave field strengths," IEEE Trans. Broadcast., Vol. 54, No. 3, 437-440, 2008.
doi:10.1109/TBC.2008.919390 Google Scholar
9. Wakai, N., N. Kurihara, and A. Otsuka, "Numerical method for calculating LF sky-wave, groundwave and their resultant wave field strengths," Electron. Lett., Vol. 40, No. 5, 288-290, 2004.
doi:10.1049/el:20040207 Google Scholar
10. Xu, H., T. Gu, and J. Zhang, "LF skywave propagation excited by a horizontal electric dipole towards understanding of its radiation mechanism," Appl. Comput. Electrom., Vol. 33, No. 6, 657-664, 2018. Google Scholar
11. B´erenger, J. P., "FDTD computation of VLF-LF propagation in the Earth-ionosphere waveguide," Ann. of T´el´ecommun., Vol. 57, No. 11/12, 1059-1090, 2002.
doi:10.1007/BF02999454 Google Scholar
12. Thevenot, M., J. P. B´erenger, T. Monediere, and F. Jecko, "A FDTD scheme for the computation of VLF-LF propagation in the anisotropic Earth-ionosphere waveguide," Ann. Telecommun., Vol. 54, No. 5/6, 297-310, 1999.
doi:10.1007/BF02995540 Google Scholar
13. Cummer, S. A., "Modeling electromagnetic propagation in the Earthionosphere waveguide," IEEE Trans. Antennas Propag., Vol. 48, No. 9, 1420-1429, 2000.
doi:10.1109/8.898776 Google Scholar
14. B´erenger , J. P., "Long range propagation of lightning pulses using the FDTD method," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 1008-1011, 2005.
doi:10.1109/TEMC.2005.858747 Google Scholar
15. B´erenger, J. P., "An implicit FDTD scheme for the propagation of VLF– LF radio waves in the Earth–ionosphere waveguide," C. R. Phys., Vol. 15, 393-402, 2014.
doi:10.1016/j.crhy.2014.05.002 Google Scholar
16. Hu, W. Y. and S. A. Cummer, "An FDTD model for low and high altitudelightning-generated EM fields," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1513-1522, 2006.
doi:10.1109/TAP.2006.874336 Google Scholar
17. Simpson, J. J. and A. Taflove, "A review of progress in FDTD Maxwell’s equations modeling of impulsive subionospheric propagation below 300 kHz," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1582-1590, 2007.
doi:10.1109/TAP.2007.897138 Google Scholar
18. Yu, Y. X. and J. J. Simpson, "An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 469-478, 2009. Google Scholar
19. Pokhrel, S., V. Shankar, and J. J. Simpson, "3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4772-4781, 2018.
doi:10.1109/TAP.2018.2847601 Google Scholar
20. Zhou, L., J. Yan, Z. Mu, Y. Pu, Q. Wang, and L. He, "Field-strength variations of LF one-hop sky waves propagation in the Earth–ionosphere waveguide at short ranges," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1780-1783, 2019.
doi:10.1109/LAWP.2019.2929780 Google Scholar
21. Zhou, L., X. Xi, J. Liu, and N. Yu, "LF ground-wave propagation over irregular terrain," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1254-1260, 2011.
doi:10.1109/TAP.2011.2109693 Google Scholar
22. Zhou, L., Y. Jiang, Z. Mu, Q. Wang, X. Hu, and L. He, "Study of Loran-C One-Hop Sky-Wave Fields at Different Altitudes Above the Ground," IEEE Antennas Wireless Propagat. Lett., Vol. 20, No. 12, 2368-2371, 2021.
doi:10.1109/LAWP.2021.3111690 Google Scholar
23. Zhou, L., Q.Wang, Z. Mu, J. Yan, J. Zhu, and L. He, "Decomposition of LF Resultant Waves with Multi-propagation Modes in the Earth-ionosphere Waveguide," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 2368-2371, 2021.
doi:10.1109/LAWP.2021.3111690 Google Scholar
24. Wang, K., S. Tang, J. Ke, and Y. Hou, "A Small Active Magnetic Antenna of Loran-C," IEEE Sens. J., Vol. 23, No. 1, 647-657, 2022.
doi:10.1109/JSEN.2022.3222577 Google Scholar