Vol. 114
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-25
Analysis of Long-Distance Propagation Characteristics of LF Multi-Hop Sky Waves
By
Progress In Electromagnetics Research Letters, Vol. 114, 13-19, 2023
Abstract
This paper focuses on the decomposition of different modes of Loran-C resultant waves, including ground waves and one-hop/two-hop sky waves, propagating in the Earth-ionosphere waveguide obtained from direct finite-difference time-domain (FDTD) modeling in the presence of the natural magnetic field. After providing the FDTD iterative formulas for the ionosphere affected by the natural magnetic field, the Loran-C resultant waves propagating in the anisotropic Earth-ionosphere waveguide are estimated using the FDTD algorithm. In both the daytime and nighttime ionosphere models, different orientations of the natural magnetic field are taken into account. The arrival times of the different propagation modes for the resultant waves were then determined using a multipath time-delay estimation method. With the above delays, the amplitudes of the different modes are acquired by solving overdetermined equations. Finally, the decomposition results are compared with those obtained in the absence of the natural magnetic field. The numerical experimental results indicate that, with a radiation power of 1 kW and a natural magnetic field of 0.5 Gs, the influence of the direction of the natural magnetic field on the field strength of one-hop sky waves is significant when the propagation distance of LF radio waves is less than 1000 km. Radio waves have multipath effects such as convergence, divergence, and diffraction due to the curvature of the Earth and the ionosphere. This results in significant interference phenomena when the propagation distance of two-hop sky waves is greater than 500 km.
Citation
Lili Zhou, Xinyue Zhu, Zhonglin Mu, Yue Zheng, and Xinyue Hu, "Analysis of Long-Distance Propagation Characteristics of LF Multi-Hop Sky Waves," Progress In Electromagnetics Research Letters, Vol. 114, 13-19, 2023.
doi:10.2528/PIERL23070502
References

1. Pu, Y., H. Yang, L. Wang, Y. Zhao, R. Luo, and X. Xi, "Analysis and modeling of temporal variation properties for LF ground-wave propagation delay," IEEE Antennas Wireless Propagat. Lett., Vol. 18, No. 4, 641-645, 2019.
doi:10.1109/LAWP.2019.2900271

2. Chen, C. H., L. Lin, T. Yeh, S. Wen, H. Yu, C. Yu, Y. Gao, P. Han, Y. Y. Sun, J. Y. Liu, C. H. Lin, C. C. Yang, C. M. Lin, H. H. Hsieh, and P. J. Lu, "Determination of epicenters before earthquakes utilizing far seismic and GNSS data: Insights from ground vibrations," Remote Sens., Vol. 12, No. 19, 3252, 2020.
doi:10.3390/rs12193252

3. Qiu, L., Z. Yang, E. Wang, and B. Li, "Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation," Eng. Geol, 2020.

4. Niknan, K. and J. J. Simpson, "A review of grid-based, time-domain modeling of electromagnetic wave propagation involving the ionosphere," IEEE J. Multiscale Multiphys. Comput. Techn., Vol. 6, 214-228, 2021.
doi:10.1109/JMMCT.2021.3136128

5. Nina, A., "Modelling of the electron density and total electron content in the quiet and solar x-ray flare perturbed ionospheric d-region based on remote sensing by VLF/LF signals," Remote Sens., Vol. 14, No. 1, 2021.
doi:10.3390/rs14010054

6. B´erenger, J. P., "FDTD propagation of VLF-LF waves in the presence of ions in the earth ionosphere waveguide," Ann. Telecommun., Vol. 75, No. 18, 437-446, 2020.
doi:10.1007/s12243-020-00756-5

7. Gu, T., L. Xu, and K. Li, "Mode interferences of VLF waves in an anisotropic waveguide due to sunrise and sunset," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7255-7264, 2018.
doi:10.1109/TAP.2018.2870347

8. Wang, J. C. H., "Seasonal variation of LF/MF sky-wave field strengths," IEEE Trans. Broadcast., Vol. 54, No. 3, 437-440, 2008.
doi:10.1109/TBC.2008.919390

9. Wakai, N., N. Kurihara, and A. Otsuka, "Numerical method for calculating LF sky-wave, groundwave and their resultant wave field strengths," Electron. Lett., Vol. 40, No. 5, 288-290, 2004.
doi:10.1049/el:20040207

10. Xu, H., T. Gu, and J. Zhang, "LF skywave propagation excited by a horizontal electric dipole towards understanding of its radiation mechanism," Appl. Comput. Electrom., Vol. 33, No. 6, 657-664, 2018.

11. B´erenger, J. P., "FDTD computation of VLF-LF propagation in the Earth-ionosphere waveguide," Ann. of T´el´ecommun., Vol. 57, No. 11/12, 1059-1090, 2002.
doi:10.1007/BF02999454

12. Thevenot, M., J. P. B´erenger, T. Monediere, and F. Jecko, "A FDTD scheme for the computation of VLF-LF propagation in the anisotropic Earth-ionosphere waveguide," Ann. Telecommun., Vol. 54, No. 5/6, 297-310, 1999.
doi:10.1007/BF02995540

13. Cummer, S. A., "Modeling electromagnetic propagation in the Earthionosphere waveguide," IEEE Trans. Antennas Propag., Vol. 48, No. 9, 1420-1429, 2000.
doi:10.1109/8.898776

14. B´erenger , J. P., "Long range propagation of lightning pulses using the FDTD method," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 1008-1011, 2005.
doi:10.1109/TEMC.2005.858747

15. B´erenger, J. P., "An implicit FDTD scheme for the propagation of VLF– LF radio waves in the Earth–ionosphere waveguide," C. R. Phys., Vol. 15, 393-402, 2014.
doi:10.1016/j.crhy.2014.05.002

16. Hu, W. Y. and S. A. Cummer, "An FDTD model for low and high altitudelightning-generated EM fields," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1513-1522, 2006.
doi:10.1109/TAP.2006.874336

17. Simpson, J. J. and A. Taflove, "A review of progress in FDTD Maxwell’s equations modeling of impulsive subionospheric propagation below 300 kHz," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1582-1590, 2007.
doi:10.1109/TAP.2007.897138

18. Yu, Y. X. and J. J. Simpson, "An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 469-478, 2009.

19. Pokhrel, S., V. Shankar, and J. J. Simpson, "3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4772-4781, 2018.
doi:10.1109/TAP.2018.2847601

20. Zhou, L., J. Yan, Z. Mu, Y. Pu, Q. Wang, and L. He, "Field-strength variations of LF one-hop sky waves propagation in the Earth–ionosphere waveguide at short ranges," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1780-1783, 2019.
doi:10.1109/LAWP.2019.2929780

21. Zhou, L., X. Xi, J. Liu, and N. Yu, "LF ground-wave propagation over irregular terrain," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1254-1260, 2011.
doi:10.1109/TAP.2011.2109693

22. Zhou, L., Y. Jiang, Z. Mu, Q. Wang, X. Hu, and L. He, "Study of Loran-C One-Hop Sky-Wave Fields at Different Altitudes Above the Ground," IEEE Antennas Wireless Propagat. Lett., Vol. 20, No. 12, 2368-2371, 2021.
doi:10.1109/LAWP.2021.3111690

23. Zhou, L., Q.Wang, Z. Mu, J. Yan, J. Zhu, and L. He, "Decomposition of LF Resultant Waves with Multi-propagation Modes in the Earth-ionosphere Waveguide," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 2368-2371, 2021.
doi:10.1109/LAWP.2021.3111690

24. Wang, K., S. Tang, J. Ke, and Y. Hou, "A Small Active Magnetic Antenna of Loran-C," IEEE Sens. J., Vol. 23, No. 1, 647-657, 2022.
doi:10.1109/JSEN.2022.3222577