Vol. 112
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-02
Modeling of Tsv-Based 3-d Heterogeneous Solenoid Inductor with High Inductance Value
By
Progress In Electromagnetics Research Letters, Vol. 112, 111-118, 2023
Abstract
In this letter, a novel 3-D heterogeneous solenoid inductor with high inductance value is proposed. By adding planar spiral structure at the ends of through-silicon vias (TSVs) of typical 3-D solenoid inductor, the heterogeneous solenoid is formed. The total inductance is increased by more than 41% compared with that of typical solenoid inductor of the same size. Additionally, an accurate analytical model of the inductor is established considering all the factors including angle and offset. Q3D simulation results verified the accuracy of the model, and the percentage error is less than 5.38%. This work provides an important reference for inductor designers to quickly estimate inductance value, configuration, and layout area.
Citation
Jinrong Su, Haobo Wang, Haipeng Dou, and Xinwei Chen, "Modeling of Tsv-Based 3-d Heterogeneous Solenoid Inductor with High Inductance Value," Progress In Electromagnetics Research Letters, Vol. 112, 111-118, 2023.
doi:10.2528/PIERL23071804
References

1. Tida, U. R., V. Mittapalli, C. Zhuo, and Y. Shi, "`Green' on-chip inductors in three-dimensional integrated circuits," 2014 IEEE Computer Society Annual Symposium on VLSI, 571-576, 2014.
doi:10.1109/ISVLSI.2014.117

2. Tida, U. R., R. Yang, C. Zhuo, and Y. Shi, "On the efficacy of through-silicon-via inductors," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 23, No. 7, 1322-1334, Jul. 2015.
doi:10.1109/TVLSI.2014.2338862

3. Feng, Z., C. A. Bower, et al. "High-Q solenoidal inductive elements," IEEE MTT-S Int. Microw. Symp. Dig., 1905-1908, 2007.

4. Zheng, J., D.-W. Wang, W.-S. Zhao, G. Wang, and W.-Y. Yin, "Modeling of TSV-based solenoid inductors for 3-D integration," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, Suzhou, China, Jul. 2015.

5. Wang, F. and N. Yu, "Simple and accurate inductance model of 3D inductor based on TSV," Electron. Lett., Vol. 52, No. 21, 1815-1816, Oct. 2016.
doi:10.1049/el.2016.2241

6. Gou, S., G. Dong, Z. Mei, and Y. Yang, "Accurate inductance modeling of 3-D inductor based on TSV," IEEE Micro. Wireless Compon. Lett., Vol. 28, No. 10, 900-902, Oct. 2018.
doi:10.1109/LMWC.2018.2867089

7. Xiong, W., G. Dong, Z. Zhu, and Y. Yang, "Compact and physics-based modeling of 3-D inductor based on through silicon via," IEEE Electron Device Lett., Vol. 42, No. 10, 1559-1562, Oct. 2021.
doi:10.1109/LED.2021.3107320

8. Mondal, S., S.-B. Cho, and B. C. Kim, "Modeling and crosstalk evaluation of 3-D TSV-based inductor with ground TSV shielding," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 25, No. 1, 308-318, Jan. 2017.
doi:10.1109/TVLSI.2016.2568755

9. Qu, C., Z. Zhu, Y. En, L. Wang, and X. Liu, "Area-efficient extended 3-D inductor based on TSV technology for RF applications," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 29, No. 2, 287-296, Feb. 2021.
doi:10.1109/TVLSI.2020.3036385

10. Paul, C. R., Inductance: Loop and Partial, 236-239, Wiley, New York, NY, USA, 2010.

11. Jayaraman, S. S., V. Vanukuru, D. Nair, and A. Chakravorty, "A scalable, broadband, and physics-based model for on-chip rectangular spiral inductors," IEEE Trans. on Magn., Vol. 55, No. 9, 1-6, Art. No. 8402006, Sept. 2019.
doi:10.1109/TMAG.2019.2916501