Vol. 114
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-26
Antenna Notch Structure Optimization Using Deep Neural Networks
By
Progress In Electromagnetics Research Letters, Vol. 114, 37-44, 2023
Abstract
To address the stressful and time-consuming problem with the current notched antenna modelling optimization tools, an improved deep multilayer perceptron (DMLP) neural network framework is designed. The method introduces an attention mechanism (Attn) layer to improve the interpretability of the model, uses the leaky ReLU activation function to prevent the gradient from vanishing, and optimizes the structure of the DMLP model using an improved particle swarm algorithm (PSO) to improve the model prediction accuracy. Then, the notch structure geometric parameters of the designed double-notch ultra-wideband (UWB) antenna serve as input to predict the return loss S11 of the antenna. The experimental results show that the method reduces the root mean square error of prediction for S11 by 73.01% compared to the traditional MLP and 64.14% compared to the unimproved DMLP, which provides a solution for modelling notched UWB antennas and helps to optimize the design of this type of antenna.
Citation
Wenjin Liu, Chen Yang, Jingchang Nan, Mingming Gao, and Hongliang Niu, "Antenna Notch Structure Optimization Using Deep Neural Networks," Progress In Electromagnetics Research Letters, Vol. 114, 37-44, 2023.
doi:10.2528/PIERL23071902
References

1. Jing, Hua, Ge He, Jiahao Sun, and Shengyao Wang, "Design of a Reconfigurable Band Notch Antenna for UWB Applications," Progress In Electromagnetics Research C, Vol. 127, 101-112, 2022.

2. Rayala, Ranjit Kumar and Singaravelu Raghavan, "Artificial Neural Network Based SIW Bandpass Filter Design Using Complementary Split Ring Resonators," Progress In Electromagnetics Research C, Vol. 115, 277-289, 2021.

3. Khan, Mohammad Monirujjaman, Sazzad Hossain, Puezia Mozumdar, Shamima Akter, and Ratil H. Ashique, "A review on machine learning and deep learning for various antenna design applications," Heliyon, Vol. 8, No. 4, Apr. 2022.
doi:10.1016/j.heliyon.2022.e09317

4. Jin, Jing, Chao Zhang, Feng Feng, Weicong Na, Jianguo Ma, and Qi-Jun Zhang, "Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4140-4155, Oct. 2019.
doi:10.1109/TMTT.2019.2932738

5. Cheng, Gong, Mingyu Wang, Wei Zhang, and Xianping Liu, "Advanced Deep Neural Network Technique for Microwave Parametric Modeling," 2021 IEEE MTT-S International Wireless Symposium (IWS), 1-3, China, May 2021.
doi:10.1109/IWS52775.2021.9499429

6. Nan, Jingchang, Huan Xie, Mingming Gao, Yang Song, and Wendong Yang, "Design of UWB Antenna Based on Improved Deep Belief Network and Extreme Learning Machine Surrogate Models," IEEE Access, Vol. 9, 126541-126549, 2021.
doi:10.1109/ACCESS.2021.3111902

7. Wang, Shui-Hua, Muhammad Attique Khan, Ziquan Zhu, and Yu-Dong Zhang, "WACPN: A Neural Network for Pneumonia Diagnosis," Computer Systems Science and Engineering, Vol. 45, No. 1, 21-34, 2023.
doi:10.32604/csse.2023.031330

8. Neog, D. K., S. S. Pattnaik, D. C. Panda, S. Devi, B. Khuntia, and M. Dutta, "Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation," IEEE Antennas and Propagation Magazine, Vol. 47, No. 3, 60-65, Jun. 2005.
doi:10.1109/MAP.2005.1532541

9. Sun, Zhang, Xin Hu, Zhijun Liu, Linlin Sun, Kang Han, Weidong Wang, and Fadhel M. Ghannouchi, "Deep neural network behavioral modeling based on transfer learning for broadband wireless power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 7, 917-920, Jul. 2021.
doi:10.1109/LMWC.2021.3078459

10. Zhou, S. H. and X. Zhao, "Prediction of conductor transmission line coupling cross section based on BP neural network," Modern Computer, Vol. 29, 85-90, 2023.

11. Liu, Zhijun, Xin Hu, Ting Liu, Xiuhua Li, Weidong Wang, and Fadhel M. Ghannouchi, "Attention-based deep neural network behavioral model for wideband wireless power amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 1, 82-85, Jan. 2020.
doi:10.1109/LMWC.2019.2952763

12. Liu, Z. Y., S. S. Ma, J. Liang, C. M. Zhu, and Y. Lei, "Channel estimation algorithm for millimeter-wave large-scale MIMO systems with attention mechanism CNN," Systems Engineering and Electronics Technology, Vol. 44, 307-312, 2022.

13. Kingma, D. and J. Ba, "Adam: A Method for Stochastic Optimization," Computer Science, 2014.

14. Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," Journal of Machine Learning Research, Vol. 15, 1929-1958, Jun. 2014.

15. Mahdi, Bejani Mohammad and Mehdi Ghatee, "A systematic review on overfitting control in shallow and deep neural networks," Artificial Intelligence Review, Vol. 54, No. 8, 6391-6438, Dec. 2021.
doi:10.1007/s10462-021-09975-1

16. Xue, Ying, "An overview of overfitting and its solutions," 2018 International Conference on Computer Information Science and Application Technology, Vol. 1168, Ne Petr Univ, Daqing, Dec. 2019.
doi:10.1088/1742-6596/1168/2/022022

17. Sergey, Ioffe and Szegedy Christian, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," International Conference on Machine Learning, Vol. 37, 448-456, Lille, France, Jul. 2015.

18. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.
doi:10.1109/ICNN.1995.488968

19. Cai, L. G., Y. Q. Hou, Y. S. Zhao, and J. H. Wang, "Application research and improvement of particle swarm optimization algorithm," 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 238-241, 2020.

20. Tang, J., S. Q. Zheng, Z. C. Wang, Z. H. Hong, and Y. B. Zhang, "An improved particle swarm optimization algorithm for learning factor and compression factor," Yunnan hydropower, Vol. 38, 77-79, 2022.

21. Niu, Zhaoyang, Guoqiang Zhong, and Hui Yu, "A review on the attention mechanism of deep learning," Neurocomputing, Vol. 452, 48-62, Sep. 2021.
doi:10.1016/j.neucom.2021.03.091

22. Nayef, Bahera H., Siti Norul Huda Sheikh Abdullah, Rossilawati Sulaiman, and Zaid Abdi Alkareem Alyasseri, "Optimized leaky ReLU for handwritten Arabic character recognition using convolution neural networks," Multimedia Tools and Applications, Vol. 81, No. 2, 2065-2094, Jan. 2022.
doi:10.1007/s11042-021-11593-6

23. Gao, M. M., H. L. Niu, and J. C. Nan, "Miniaturized dual band-notched ultra-wideband antenna," 2021 National Antenna Annual Conference, 990-993, 2021.

24. Lyu, Zimeng, AbdElRahman ElSaid, Joshua Karns, Mohamed Mkaouer, and Travis Desell, "An experimental study of weight initialization and lamarckian inheritance on neuroevolution," Applications of Evolutionary Computation, Evoapplications 2021, Vol. 12694, 584-600, Electr Network, Apr. 2021.
doi:10.1007/978-3-030-72699-7_37