Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-24
EM Pulse Scattering Front Echo Reduction for the Dielectric Elliptical Cylinder Located Inside Dielectric Media
By
Progress In Electromagnetics Research Letters, Vol. 114, 1-6, 2023
Abstract
This article presents a novel numerical approach to reduce scattering echoes in the front region of dielectric objects with the method of auxiliary sources. The method involves using a Gaussian radio pulse covering the 6-12 GHz frequency range. The approach involves optimizing the dimensions and dielectric permittivity of an elliptical cylinder in order to make it invisible, thus eliminating the need for metamaterial cloaking. The proposed approach has been validated by comparing the results of numerical experiments obtained during pulse echo observations with the FDTD and MoM numerical methods. The proposed method is a highly efficient and practical approach for scattering problems, such as scattering echo reduction, offering comparable results to FDTD and MoM methods with significantly reduced computational requirements.
Citation
Emre İşcan, and Vasil Tabatadze, "EM Pulse Scattering Front Echo Reduction for the Dielectric Elliptical Cylinder Located Inside Dielectric Media," Progress In Electromagnetics Research Letters, Vol. 114, 1-6, 2023.
doi:10.2528/PIERL23081007
References

1. Murugesan, Akila, Krishnasamy Selvan, Ashwin K. Iyer, Kumar Vaibhav Srivastava, and Arokiaswami Alphones, "A review of metasurface-assisted RCS reduction techniques," Progress In Electromagnetics Research B, Vol. 94, 75-103, 2021.

2. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Materials Today, Vol. 12, No. 3, 22-29, 2009.

3. Bondeson, A., Y. Yang, and P. Weinerfelt, "Optimization of radar cross section by a gradient method," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1260-1263, Mar. 2004.

4. Du, F., P. Huang, and J. Ji, "Study and optimization on the scattering characteristic of two-dimensional metal airfoil covered with plasma using ADE-FDTD," Optik, Vol. 147, 224-231, 2017.

5. Liao, Wen-Jiao, Yuan-Chang Hou, and Szu-Ti Chen, "Dielectric-loaded ultrawideband RCS reduction structures," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2277-2289, 2020.

6. Chen, Shin-Hon, Yuan-Chang Hou, and Wen-Jiao Liao, "Multistep cylindrical structure design for wideband radar cross section reduction at normal incidence," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1849-1853, Apr. 2015.

7. Cai, Wenshan, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.

8. Younesiraad, H., M. Bemani, and S. Nikmehr, "Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach," IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 278-285, 2019.

9. Song, Yi-Chuan, Jun Ding, Chen-Jiang Guo, Yu-Hui Ren, and Jia-Kai Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 329-331, 2015.

10. Tabatadze, Vasil, Kamil Karaçuha, and Revaz Zaridze, "Electromagnetic Diffraction by a Pulse from 2-D Dielectric Objects," 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), 559-562, Ukraine, 2022.

11. Tabatadze, V., O. Drobakhin, and K. Karaçuha, "Pulse diffraction by a circular dielectric cylinder," Journal of Electrical Engineering, Vol. 74, No. 3, 188-196, 2023.

12. https://www.youtube.com/channel/UCc-HE2OgIpftQPo96haA6Hw.