Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-27
Series-Fed Loop Antenna Arrays with an Expanded Bandwidth of Circular Polarization
By
Progress In Electromagnetics Research Letters, Vol. 114, 75-81, 2023
Abstract
Three array antennas are analyzed to expand a 3 dB axial ratio bandwidth using the method of moments. First, we design reference and present antennas comprising loop elements with a perturbation segment and quasi-two sources for circular polarization. It is found that the reference and present antennas have an axial ratio bandwidth of 9% and a 3 dB gain drop bandwidth of 31% (35% for the axial ratio bandwidth), respectively. Subsequently, the present antenna is modified using a sequential rotation technique. It is revealed that the modified antenna shows a gain drop bandwidth of 45% (60% for the axial ratio bandwidth). The simulated results are verified with experimental ones.
Citation
Kazuhide Hirose, Susumu Tsubouchi, and Hisamatsu Nakano, "Series-Fed Loop Antenna Arrays with an Expanded Bandwidth of Circular Polarization," Progress In Electromagnetics Research Letters, Vol. 114, 75-81, 2023.
doi:10.2528/PIERL23082002
References

1. Nguyen-Trong, N., S. J. Chen, and C. Fumeaux, "High-gain dual-band dual-sense circularly polarized spiral series-fed patch antenna," IEEE Open Journal of Antennas and Propagation, Vol. 3, 343-352, 2022.

2. Cao, Yuanxi, Sen Yan, Jianxing Li, and Juan Chen, "A pillbox based dual circularly-polarized millimeter-wave multi-beam antenna for future vehicular radar applications," IEEE Transactions on Vehicular Technology, Vol. 71, No. 7, 7095-7103, Jul. 2022.
doi:10.1109/TVT.2022.3162299

3. Mishra, Ghanshyam, Satish Kumar Sharma, and Jia-Chi Samuel Chieh, "A high gain series-fed circularly polarized traveling-wave antenna at W-band using a new butterfly radiating element," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 7947-7957, Dec. 2020.
doi:10.1109/TAP.2020.3000567

4. Bui, Cong Danh, Nghia Nguyen-Trong, and Truong Khang Nguyen, "A planar dual-band and dual-sense circularly polarized microstrip patch leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2162-2166, Dec. 2020.
doi:10.1109/LAWP.2020.3026067

5. Re, Pascual D. Hilario, Davide Comite, and Symon K. Podilchak, "Single-layer series-fed planar array with controlled aperture distribution for circularly polarized radiation," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4973-4978, Jun. 2020.
doi:10.1109/TAP.2019.2952001

6. Hirose, Kazuhide, Yuto Kikkawa, and Hisamatsu Nakano, "Dual-loop arrays fed by coplanar parallel lines for wideband circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, 478-482, Apr. 2021.
doi:10.1109/LAWP.2021.3054587

7. Hirose, Kazuhide, Motoshi Nakatsu, and Hisamatsu Nakano, "A loop antenna with enlarged bandwidth of circular polarization — Its application in a comb-line antenna," Progress In Electromagnetics Research C, Vol. 105, 175-184, 2020.

8. Hirose, Kazuhide, Yuki Tamura, Masaki Tsugane, and Hisamatsu Nakano, "Coplanar series-fed spiral antenna arrays for enlarged axial ratio bandwidth," Progress in Electromagnetics Research Letters, Vol. 108, 1-8, 2023.

9. Hirose, K., S. Tsubouchi, and H. Nakano, "A loop antenna with quasi-two sources for circular polarisation," Electronics Letters, Vol. 58, No. 6, 222-224, Mar. 2022.
doi:10.1049/ell2.12419

10. Harrington, Roger F., Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.
doi:10.1109/9780470544631

11. Hirose, K., T. Yoshida, and H. Nakano, "Unbalanced-fed rectangular loop antennas for circular polarization," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 173-174, Boston, Ma, Jul. 2018.

12. Hirose, Kazuhide, Koki Nishino, and Hisamatsu Nakano, "Dual-loop antennas with an expanded axial ratio bandwidth," Electronics Letters, Vol. 59, No. 8, e12784, 2023.