Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-25
A Model Prediction-Based Leading Angle Flux Weakening Control Method for Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research Letters, Vol. 114, 7-12, 2023
Abstract
A model prediction based leading angle flux weakening control method is proposed to improve the dynamic and steady-state performance of permanent magnet synchronous motors during the flux weakening process. First, the mathematical model of a permanent magnet synchronous motor is used to construct the prediction model in this method, and then a thorough analysis of the permanent magnet synchronous motor's flux weakening control procedure is carried out. Secondly, based on the principle of model predictive control and the existing delay problems, the corresponding delay compensation method is proposed, and the leading angle flux weakening control method is applied to the proposed model predictive control algorithm, so as to achieve flux weakening speed-up control. Finally, the prototype is used to confirm the effectiveness and precision of the proposed technique. The experimental results show that the leading angle flux weakening control method based on model prediction has faster dynamic response to speed and current than the traditional vector flux weakening control method. At the same time, the steady-state current amplitude is smaller, which has superior current control.
Citation
Xing Zhang, Lin Wang, Yanyan Ye, Lihui Guo, and Yilin Zhu, "A Model Prediction-Based Leading Angle Flux Weakening Control Method for Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research Letters, Vol. 114, 7-12, 2023.
doi:10.2528/PIERL23083101
References

1. Liu, Xin, Yanfei Pan, Yilin Zhu, Hui Han, and Lei Ji, "Decoupling control of permanent magnet synchronous motor based on parameter identification of fuzzy least square method," Progress in Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/PIERM21032601

2. Zhu, Lidong, Ben Xu, and Huangqiu Zhu, "Interior permanent magnet synchronous motor dead-time compensation combined with extended kalman and neural network bandpass filter," Progress in Electromagnetics Research M, Vol. 98, 193-203, 2020.
doi:10.2528/PIERM20100903

3. Gao, M., H. Zhu, and Y. Shi, "Predictive direct control of permanent magnet assisted bearingless synchronous reluctance motor based on super twisting sliding mode," Progress In Electromagnetics Research M, 2021.

4. Li, Xinyue, Wei Tian, Xiaonan Gao, Qifan Yang, and Ralph Kennel, "A generalized observer-based robust predictive current control strategy for pmsm drive system," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1322-1332, Feb. 2022.
doi:10.1109/TIE.2021.3062271

5. Niu, Shuangxia, Yixiao Luo, Weinong Fu, and Xiaodong Zhang, "Robust model predictive control for a three-phase pmsm motor with improved control precision," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 838-849, Jan. 2021.
doi:10.1109/TIE.2020.3013753

6. Wang, Zhiqiang, Anbo Yu, Xinmin Li, Guozheng Zhang, and Changliang Xia, "A novel current predictive control based on fuzzy algorithm for PMSM," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 2, 990-1001, Jun. 2019.
doi:10.1109/JESTPE.2019.2902634

7. Zhang, Xiaoguang, Liang Zhang, and Yongchang Zhang, "Model predictive current control for pmsm drives with parameter robustness improvement," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1645-1657, Feb. 2019.
doi:10.1109/TPEL.2018.2835835

8. Zhang, Yongchang, Jialin Jin, and Lanlan Huang, "Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 993-1003, Feb. 2021.
doi:10.1109/TIE.2020.2970660

9. Zhang, Yongchang, Jialin Jin, Hao Jiang, and Dong Jiang, "Adaptive pi parameter of flux-weakening controller based on voltage feedback for model predictive control of SPMSM," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2674-2681, Detroit, Mi, Oct. 10-15 2020.

10. Zhang, Yunfei and Rong Qi, "Flux-weakening drive for IPMSM based on model predictive control," Energies, Vol. 15, No. 7, Apr. 2022.
doi:10.3390/en15072543

11. Mynar, Zbynek, Libor Vesely, and Pavel Vaclavek, "PMSM model predictive control with field-weakening implementation," IEEE Transactions on Industrial Electronics, Vol. 63, No. 8, 5156-5166, Aug. 2016.
doi:10.1109/TIE.2016.2558165

12. Zheng, Zhihao and Dan Sun, "Model predictive flux control with cost function-based field weakening strategy for permanent magnet synchronous motor," IEEE Transactions on Power Electronics, Vol. 35, No. 2, 2151-2159, Feb. 2020.
doi:10.1109/TPEL.2019.2921361

13. Zhang, Xiaoguang, Zhihao Zhao, and Chi Xu, "A flux-weakening method for PMSM based model predictive direct speed control," 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2557-2561, China, Nov. 29-dec. 02, 2020.
doi:10.1109/IPEMC-ECCEAsia48364.2020.9368078

14. Liu, Jinglin, Chao Gong, Zexiu Han, and Haozheng Yu, "IPMSM model predictive control in flux-weakening operation using an improved algorithm," IEEE Transactions on Industrial Electronics, Vol. 65, No. 12, 9378-9387, Dec. 2018.
doi:10.1109/TIE.2018.2818640

15. Zhou, Kai, Min Ai, Dongyang Sun, Ningzhi Jin, and Xiaogang Wu, "Field weakening operation control strategies of PMSM based on feedback linearization," Energies, Vol. 12, No. 23, Dec. 2019.
doi:10.3390/en12234526

16. Ding, Dawei, Gaolin Wang, Nannan Zhao, Guoqiang Zhang, and Dianguo Xu, "Enhanced flux-weakening control method for reduced DC-link capacitance IPMSM drives," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7788-7799, Aug. 2019.
doi:10.1109/TPEL.2018.2878877

17. Deng, Tao, Zhenhua Su, Junying Li, Peng Tang, Xing Chen, and Ping Liu, "Advanced angle field weakening control strategy of permanent magnet synchronous motor," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 3424-3435, Apr. 2019.
doi:10.1109/TVT.2019.2901275

18. Miguel-Espinar, Carlos, Daniel Heredero-Peris, Gabriel Gross, Marc Llonch-Masachs, and Daniel Montesinos-Miracle, "Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 68, No. 10, 9254-9264, Oct. 2021.
doi:10.1109/TIE.2020.3020029

19. Pan, Yanfei, Xin Liu, Yilin Zhu, and Zhongshu Li, "A leading angle flux weakening control method for PMSM based onactive disturbance rejection control," Progress In Electromagnetics Research C, Vol. 121, 29–38, 2022.

20. Liu, X., Y. Pan, L. Wang, J. Xu, Y. Zhu, and Z. Li, "Model predictive control of permanent magnet synchronous motor basedon parameter identification and dead time compensation," Progress In Electromagnetics Research C, Vol. 120, 253–263, 2022.