Vol. 114
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-28
Hexa-Band Mobile Antenna with FSS-R-Card Combination for SAR Reduction
By
Progress In Electromagnetics Research Letters, Vol. 114, 83-89, 2023
Abstract
In this paper, a new SAR shield design method based on combining graphene-type absorbing cards with metal sheets via a frequency-selective surface resistive card (FSS-R-card) design is proposed. Based on this method, a low-SAR hexa-band antenna for mobile phone applications is designed. The proposed antenna has a simple structure consisting of two radiation strips and a coupling strip for enhancing the high-frequency bandwidth. The antenna covers multiple frequency bands, namely LTE Band 13 (747-787 MHz); DCS 1800 (1710-1880 MHz); PCS 1900 (1850-1990 MHz); WCDMA (1920-2170 MHz); LTE Band 40 (2300-2400 MHz); and Band 41 (2496-2690 MHz). The FSS-R-card combination acts like a PEC in the low-frequency band and like an R-card in the passband. With this approach, we were able to obtain the optimum results in reducing SAR levels and preserving the antenna efficiency in low bands. The prototype antenna was measured by the SAM head model, and measurement results show that the SAR is reduced up to 51% (at 1.9 GHz) by using the FSS-R-card. The SAR level is under 1.6 W/Kg over the whole band with good efficiency preservation at the low bands.
Citation
Guo Liu, Jie Gu, Zhaozhao Gao, Tao Tang, and Xiexun Zhang, "Hexa-Band Mobile Antenna with FSS-R-Card Combination for SAR Reduction," Progress In Electromagnetics Research Letters, Vol. 114, 83-89, 2023.
doi:10.2528/PIERL23092102
References

1. Lu, Jui-Han and Jia-Ling Guo, "Small-size octaband monopole antenna in an LTE/WWAN mobile phone," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 548-551, 2014.
doi:10.1109/LAWP.2014.2311797

2. Wang, Zheyu, Lanlin Z. Lee, Dimitris Psychoudakis, and John L. Volakis, "Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3321-3329, Jun. 2014.
doi:10.1109/TAP.2014.2314311

3. Ban, Yong-Ling, Yun-Fei Qiang, Zhi Chen, Kai Kang, and Joshua Le-Wei Li, "Low-profile narrow-frame antenna for seven-band WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 463-466, 2014.
doi:10.1109/LAWP.2014.2309656

4. Messaoudi, H. and T. Aguili, "SAR reduction in the human head model using metamaterials," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS 2019), 1-5, Hammamet, Tunisia, Oct. 2019.
doi:10.1109/mms48040.2019.9157292

5. Ahlbom, A., U. Bergqvist, J. Bernhardt, J. Cesarini, L. Court, M. Grandolfo, M. Hietanen, A. McKinlay, M. Repacholi, D. Sliney, J. Stolwijk, M. Swicord, L. Szabo, M. Taki, T. Tenforde, H. Jammet, R. Matthes, and Int Commission Nonionizing Radiation Protectio, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, Apr. 1998.

6. IEEE Std C95.1-1991 "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz," 1-76, 1992.

7. Bang, Jihoon and Jaehoon Choi, "A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1118-1122, Jun. 2018.
doi:10.1109/LAWP.2018.2836196

8. Wang, Mengjun, Ze Yang, Jianfei Wu, Jianhui Bao, Jianying Liu, Lulu Cai, Tao Dang, Hongxing Zheng, and Erping Li, "Investigation of sar reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, Jun. 2018.
doi:10.1109/TAP.2018.2820733

9. Singh, Saurabh and Sudhanshu Verma, "SAR reduction and gain enhancement of compact wideband stub loaded monopole antenna backed with electromagnetic band gap array," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 10, Oct. 2021.
doi:10.1002/mmce.22813

10. Takagi, K., Y. Furukawa, Y. Koyamashita, S. Kusunoki, and S. Tsuchiya, "Portable telephone with reduced specific absorption rate and improved efficiency," U.S. Patent 7,274,953 B2., Sep. 2007.

11. Hirata, A., T. Adachi, and T. Shiozawa, "Folded-loop antenna with a reflector for mobile handsets at 2.0 GHz," Microwave and Optical Technology Letters, Vol. 40, No. 4, 272-275, Feb. 2004.
doi:10.1002/mop.11350

12. Lu, Bao, Bo Pang, Wei Hu, and Wen Jiang, "Low-SAR antenna design and implementation for mobile phone applications," IEEE Access, Vol. 9, 96444-96452, 2021.
doi:10.1109/ACCESS.2021.3093720

13. Zhang, Huan Huan, Guo Guo Yu, Ying Liu, Yi Xiang Fang, Guangming Shi, and Shang Wang, "Design of low-SAR mobile phone antenna: Theory and applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 698-707, Feb. 2021.
doi:10.1109/TAP.2020.3016420

14. Mahmood, S. N., A. J. Ishak, T. Saeidi, H. Alsariera, and A. Soh, "Recent advances in wearable antenna technologies: A review," Progress In Electromagnetics Research B, Vol. 89, 1–27, 2020.

15. Katoch, K., N. Jaglan, and S. D. Gupta, "A review on frequency selective surfaces and its applications," 2019 International Conference on Signal Processing and Communication (ICSC), 75-81, NOIDA, India, 2019.

16. Wang, J., S. Liu, J. Lou, and X. Zhao, "Ultra-wideband array with multi-layer frequency selective surface resistive-card and 51.4 : 1 bandwidth," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3, China, 2023.

17. Johnson, Alexander D., Jingni Zhong, Satheesh Bojja Venkatakrishnan, Elias A. Alwan, and John L. Volakis, "Phased array with low-angle scanning and 46:1 bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 7833-7841, Dec. 2020.
doi:10.1109/TAP.2020.2998869

18. Alja'afreh, Saqer S., Yi Huang, Qian Xu, and Lei. Xing, "Hexa-band antenna for smartphone applications," 2017 10th Jordanian International Electrical and Electronics Engineering Conference (JIEEEC), Amman, Jordan, May 2017.

19. Zheng, Ming, Hanyang Wang, and Yang Hao, "Internal hexa-band folded monopole/dipole/loop antenna with four resonances for mobile device," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2880-2885, Jun. 2012.
doi:10.1109/TAP.2012.2194687

20. Peng, Mingzhi, Huanqing Zou, Yixin Li, Mingkai Wang, and Guangli Yang, "An eight-port 5G/WLAN MIMO antenna array with hexa-band operation for mobile handsets," 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 39-40, Boston, Ma, Jul. 2018.

21. Peng, Chia-Mei, I-Fong Chen, and Chia-Te Chien, "A novel hexa-band antenna for mobile handsets application," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3427-3432, Sep. 2011.
doi:10.1109/TAP.2011.2161447

22. Wang, Luofen, Wenbin Lin, and Guangli Yang, "An internal hexa-band antenna for 4G mobile phone application," 2013 IEEE International Conference on Microwave Technology & Computational Electromagnetics (ICMTCE), 239-241, China, Aug. 2013.