Vol. 115
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-08
Research on Multi-Rgion Compensation Plasma Device
By
Progress In Electromagnetics Research Letters, Vol. 115, 15-18, 2024
Abstract
Conventional solid-state plasma devices encounter limitations in terms of the concentration and distribution uniformity of solid-state plasma, which adversely affects their microwave characteristics and overall antenna system performance. In this study, we propose a novel heterogeneous SPIN diode with multi-region compensation effects aimed at addressing this challenge. By incorporating SiGe regions within the intrinsic region of the device, we enhance the carrier injection ratio, effectively compensating for the rapid attenuation of solid-state plasma. As a result, a high-concentration and uniformly distributed solid-state plasma region is achieved within the SPIN diode, surpassing a concentration threshold of 1×1018 cm-3 within the intrinsic region. Through extensive simulations utilizing Sentaurus TCAD software, we demonstrate notable improvements in plasma concentration, distribution uniformity, and other key electrical parameters compared to traditional devices. The presented findings mark significant advancements in the realm of silicon-based plasma devices and hold promise for reconfigurable antenna systems.
Citation
Yutian Li, Yingying Wang, Zhanrong Zhou, Xiaofang Shen, Chao Ma, Yiming Chen, and Guoqing Zhang, "Research on Multi-Rgion Compensation Plasma Device," Progress In Electromagnetics Research Letters, Vol. 115, 15-18, 2024.
doi:10.2528/PIERL23092201
References

1. Cheng, Yang and Yuandan Dong, "Dual-broadband dual-polarized shared-aperture magnetoelectric dipole antenna for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7918-7923, Nov. 2021.
doi:10.1109/TAP.2021.3083744

2. Chang, Lei, Ling-Lu Chen, Jian-Qiang Zhang, and Zhuang-Zhi Chen, "A compact wideband dipole antenna with wide beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1701-1705, Sep. 2021.
doi:10.1109/LAWP.2021.3094318

3. Chen, Rui-Sen, Lei Zhu, Sai-Wai Wong, Jing-Yu Lin, Yin Li, Long Zhang, and Yejun He, "S-band full-metal circularly polarized cavity-backed slot antenna with wide bandwidth and wide beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5963-5968, Sep. 2021.
doi:10.1109/TAP.2021.3061116

4. Manzillo, Francesco Foglia, Antonio Clemente, and L G. José, "High-gain D-band transmitarrays in standard PCB technology for beyond-5G communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 587-592, 2020.
doi:10.1109/TAP.2019.2938630

5. Hao, Jiaxiang, Jian Ren, Xiaoyu Du, Jan Hvolgaard Mikkelsen, Ming Shen, and Ying Zeng Yin, "Pattern-reconfigurable Yagi-Uda antenna based on liquid metal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 4, 587-591, Apr. 2021.
doi:10.1109/LAWP.2021.3058115

6. Liu, Ying, Qia Wang, Yongtao Jia, and Peisheng Zhu, "A frequency- and polarization-reconfigurable slot antenna using liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7630-7635, Nov. 2020.
doi:10.1109/TAP.2020.2993110

7. Abbas, Anees, Niamat Hussain, Jaemin Lee, Seong Gyoon Park, and Nam Kim, "Triple rectangular notch UWB antenna using EBG and SRR," IEEE Access, Vol. 9, 2508-2515, 2021.
doi:10.1109/ACCESS.2020.3047401

8. Veljovic, Miroslav and Anja K. Skrivervik, "Ultralow-profile circularly polarized reflectarray antenna for cubesat intersatellite links in K-band," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4588--4597, 2021.

9. Lim, Inseop and Sungjoon Lim, "Monopole-like and boresight pattern reconfigurable antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5854-5859, Dec. 2013.
doi:10.1109/TAP.2013.2283926

10. Rezaeieh, Sasan Ahdi, Ali Zamaru, and Amin M. Abbosh, "Pattern reconfigurable wideband loop antenna for thorax imaging," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5104-5114, Aug. 2019.
doi:10.1109/TAP.2018.2889164

11. Shan, Xiaoyong and Zhongxiang Shen, "Miniaturized UHF/UWB tag antenna for indoor positioning systems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2453--2457, 2019.

12. Li, Wentao, Yiming Wang, Shunlai Sun, and Xiaowei Shi, "An FSS-backed reflection/transmission reconfigurable array antenna," IEEE Access, Vol. 8, 23904-23911, 2020.
doi:10.1109/ACCESS.2020.2970611

13. Nella, Anveshkumar and Abhay Suresh Gandhi, "A five-port integrated UWB and narrowband antennas system design for CR applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1669-1676, Apr. 2018.
doi:10.1109/TAP.2018.2800718

14. Foroutan, Farzad and Natalia K. Nikolova, "UWB active antenna for microwave breast imaging sensing arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 1951-1955, Oct. 2019.
doi:10.1109/LAWP.2019.2929016

15. Mohamadzade, Bahare, Roy B. V. B. Simorangkir, Raheel M. Hashmi, and Ali Lalbakhsh, "A conformal ultrawideband antenna with monopole-like radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6383-6388, Aug. 2020.
doi:10.1109/TAP.2020.2969744

16. Deng, Jingya, Shmin Hou, Luyu Zhao, and Lixin Guo, "A reconfigurable filtering antenna with integrated bandpass filters for UWB/WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 401-404, Jan. 2018.
doi:10.1109/TAP.2017.2760363

17. Hussain, Rifaqat and Mohammad S. Sharawi, "An integrated slot-based frequency-agile and UWB multifunction MIMO antenna system," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2150-2154, Oct. 2019.
doi:10.1109/LAWP.2019.2939112

18. Wang, Wensong, Shuhui Yang, Zhongyuan Fang, Quqin Sun, Yinchao Chen, and Yuanjin Zheng, "Compact dual-polarized wideband antenna with dual-/single-band shifting for microbase station applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7323-7332, Nov. 2021.
doi:10.1109/TAP.2021.3076256

19. Versaci, Mario and Francesco Carlo Morabito, "Numerical approaches for recovering the deformable membrane profile of electrostatic microdevices for biomedical applications," Sensors, Vol. 23, No. 3, 1688, Feb. 2023.
doi:10.3390/s23031688

20. Su, Han, Huiyong Hu, Pedram Mousavi, Heming Zhang, Bin Wang, and Yuanhao Miao, "Silicon-based high-integration reconfigurable dipole with SPiN," Solid-State Electronics, Vol. 154, 20-23, Apr. 2019.
doi:10.1016/j.sse.2019.02.005