Vol. 116
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-27
Mechanism of Microwave Effect on the Extraction Process of Tea Polyphenols
By
Progress In Electromagnetics Research Letters, Vol. 116, 17-22, 2024
Abstract
Microwave-assisted extraction (MAE) is an effective method for extracting tea polyphenols. However, research on MAE mainly focuses on experimental methods, which not only leads to a large amount of experimental work but also generates a lot of material waste. In addition, due to the lack of mechanism research, it is difficult to find a more effective method. In this study, based on electromagnetic field theory, the heat and mass transfer model of tea polyphenol extraction is established based on measuring the dielectric properties of the extract. The distribution of temperature, diffusion coefficient, and flow rate of microwave-assisted extraction of tea polyphenols are all analyzed in detail. The results show that the temperature distribution in the extraction system is uneven. The middle temperature of the extraction solution is high and the edge is low. Moreover, with the increase of microwave power and extraction temperature, the diffusion coefficient is gradually increased, and the flow rate increases, which is more conducive to the extraction process as time goes by. This study provides a theoretical basis for the microwave-assisted extraction of tea polyphenols, reducing experimental workload and material waste.
Citation
Dan Li, Tao He, Boyu Li, Ziqin Wang, and Zhengming Tang, "Mechanism of Microwave Effect on the Extraction Process of Tea Polyphenols," Progress In Electromagnetics Research Letters, Vol. 116, 17-22, 2024.
doi:10.2528/PIERL23100701
References

1. Yan, Zhaoming, Yinzhao Zhong, Yehui Duan, Qinghua Chen, and Fengna Li, "Antioxidant mechanism of tea polyphenols and its impact on health benefits," Animal Nutrition, Vol. 6, No. 2, 115-123, Jun. 2020.
doi:10.1016/j.aninu.2020.01.001

2. Sun, Mu-Fang, Chang-Ling Jiang, Ya-Shuai Kong, Jin-Lei Luo, Peng Yin, and Gui-Yi Guo, "Recent advances in analytical methods for determination of polyphenols in tea: A comprehensive review," Foods, Vol. 11, No. 10, 1425, May 2022.
doi:10.3390/foods11101425

3. Li, Gang-Feng, Hui-Xi Wang, Shi-Xue Chen, Rong Fu, and Bei Huo, "Study on microwave-assisted extraction of low-grade green tea polyphenols," Cereals & Oils, Vol. 28, No. 1, 60-62, 2015.

4. Mojzer, Eva Brglez, Masa Knez Hrncic, Mojca Skerget, Zeljko Knez, and Urban Bren, "Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects," Molecules, Vol. 21, No. 7, 901, Jul. 2016.
doi:10.3390/molecules21070901

5. Xu, F. F., B. D. Zhu, G. W. Jiang, X. Y. Yu, and X. Q. Sang, "Advances in tea polyphenol extraction methods and pharmacological effects," J. Mod. Med. Health, Vol. 28, No. 7, 1033-1035, 2012.

6. Coelho, Jose P., Maria P. Robalo, Stanislava Boyadzhieva, and Roumiana P. Stateva, "Microwave-assisted extraction of phenolic compounds from spent coffee grounds. Process optimization applying design of experiments," Molecules, Vol. 26, No. 23, 7320, Dec. 2021.
doi:10.3390/molecules26237320

7. Chong, Chuanyin, Tao Hong, and Kama Huang, "Design of the complex permittivity measurement system based on the waveguide six-port reflectometer," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-12, 2022.
doi:10.1109/TIM.2022.3172425

8. Xue, H. K., J. Q. Tan, X. Cai, C. H. Liu, J. T. Tang, and Q. Li, "Effect of microwave power on the extraction process of anthocyaninfrom cranberry," Food Science, Vol. 43, No. 1, 92-101, 2022.

9. Zhou, Jie, Xiaoqing Yang, JingHua Ye, Huacheng Zhu, Jianping Yuan, Xun Li, and Kama Huang, "Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating," International Journal of Heat and Mass Transfer, Vol. 134, 271-285, 2019.

10. Yan, Jian, Xiaoqing Yang, and Ka-Ma Huang, "Numerical analysis of the influence of stir on water during microwave heating," Progress In Electromagnetics Research C, Vol. 17, 105-119, 2010.

11. Ye, Jinghua, Junqing Lan, Yuan Xia, Yang Yang, Huacheng Zhu, and Kama Huang, "An approach for simulating the microwave heating process with a slow-rotating sample and a fast-rotating mode stirrer," International Journal of Heat and Mass Transfer, Vol. 140, 440-452, Sep. 2019.
doi:10.1016/j.ijheatmasstransfer.2019.06.017

12. Zhu, Huacheng, Jianbo He, Tao Hong, Qianzhen Yang, Ying Wu, Yang Yang, and Kama Huang, "A rotary radiation structure for microwave heating uniformity improvement," Applied Thermal Engineering, Vol. 141, 648-658, Aug. 2018.
doi:10.1016/j.applthermaleng.2018.05.122

13. Yanniotis, S. and N. G. Stoforos, "Modeling food processing operations with computational fluid dynamics: A review," Scientia Agriculturae Bohemica, Vol. 45, No. 1, 1-10, 2014.
doi:10.7160/sab.2014.450101

14. Hossan, Mohammad Robiul, Do Young Byun, and Prashanta Dutta, "Analysis of microwave heating for cylindrical shaped objects," International Journal of Heat and Mass Transfer, Vol. 53, No. 23-24, 5129-5138, Nov. 2010.
doi:10.1016/j.ijheatmasstransfer.2010.07.051

15. Bi, Gening, Xiaohua Xiao, and Gongke Li, "Development and validation of multiple physical fields coupling model for microwave-assisted extraction," Chemical Journal of Chinese Universities, Vol. 43, No. 3, 56-66, Mar. 2022.
doi:10.7503/cjcu20210739