Vol. 115
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-12
Wideband Capability in Embedded Stacked Rectangular Dielectric Resonator Antenna for X-Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 115, 19-25, 2024
Abstract
This paper introduces a novel design of an embedded stacked Rectangular Dielectric Resonator Antenna (RDRA). The antenna structure incorporates two distinct materials, namely PLA (Polylactic Acid) and Alumina, possessing dielectric constants of 3.45 and 9.9, respectively. A coaxial probe is employed to feed the antenna, enabling efficient signal transmission. The simulated results indicate the presence of two distinct resonance frequencies, which are 9.4 GHz and 10.6 GHz. Furthermore, the simulated antenna exhibits a maximum gain of 7.7 dB at 10.6 GHz, while demonstrating a wideband characteristic spanning approximately 22.7% of the frequency band between 8.75 GHz and 11 GHz on the measurement. The design and simulation of the RDRA are carried out using CST 2020 microwave studio, ensuring accurate and reliable results. The proposed antenna configuration is well suited for X-band applications such as radar and satellite systems.
Citation
Jihad Ben Yamoun, and Noura Aknin, "Wideband Capability in Embedded Stacked Rectangular Dielectric Resonator Antenna for X-Band Applications," Progress In Electromagnetics Research Letters, Vol. 115, 19-25, 2024.
doi:10.2528/PIERL23101606
References

1. Long, S. A., M. W. McAllister, and L. C. Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 406-412, May 1983.
doi:10.1109/TAP.1983.1143080        Google Scholar

2. Kishk, Ahmed A., R. Chair, and K.-F. Lee, "Broadband dielectric resonator antennas excited by L-shaped probe," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2182-2189, Aug. 2006.
doi:10.1109/TAP.2006.879186        Google Scholar

3. Jaoujal, Achraf, Aknin Noura, and A. El Ahmed, "Wide-band rectangular dielectric resonator antenna for wireless applications," Piers Proceedings, 98-101, Marrakesh, Morocco, Mar. 2011.

4. Denidni, T. A., Q. Rao, and A. R. Sebak, "Broadband L-shaped dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 453-454, 2005.
doi:10.1109/LAWP.2005.860198        Google Scholar

5. Kumar, A. V. P., V. Hamsakutty, J. Yohannan, and K. T. Mathew, "Microstripline fed cylindrical dielectric resonator antenna with a coplanar parasitic strip," Progress In Electromagnetics Research, Vol. 60, 143-152, 2006.
doi:10.2528/PIER05121301        Google Scholar

6. Saed, M. and R. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
doi:10.2528/PIER05041401        Google Scholar

7. Jaoujal, A., M. Younssi, N. Aknin, and A. El Moussaoui, "Wide-band rectangular dielectric resonator antenna with two symmetrical gaps," International Journal of Advanced Scientific and Technical Research, Vol. 4, No. 2, 708-713, Aug. 2012.        Google Scholar

8. Kumar, Pramod, Dwari Santanu, Utkarsh, Shailendra Singh, and Jitendra Kumar, "Investigation and development of 3D printed biodegradable PLA as compact antenna for broadband applications," IETE Journal of Research, Vol. 66, No. 1, 53-64, Jan. 2020.
doi:10.1080/03772063.2018.1474140        Google Scholar

9. Marrocco, V., V. Basile, I. Fassi, M. Grande, D. Laneve, F. Prudenzano, and A. D'Orazio, "Dielectric resonant antennas via additive manufacturing for 5G communications," 2019 Photonics & Electromagnetics Research Symposium --- Spring (PIERS-Spring), 174-180, Rome, Italy, Jun. 2019.
doi:10.1109/piers-spring46901.2019.9017673

10. Kumar, Arvind, Kapoor Pragati, Kumar Pramod, Kumar Jitendra, and Kumar Amitesh, "Design and development of enhanced gain aperture coupled broadband biodegradable dielectric resonator antenna for WLAN applications," Wireless Personal Communications, Vol. 115, No. 2, 1525-1539, Nov. 2020.
doi:10.1007/s11277-020-07641-3        Google Scholar

11. Ben Yamoun, Jihad, Aknin Noura, and Jaoujal Achraf, "Low profile ultra wide band hybrid dielectric resonator antenna for emergent networks," 2019 7th Mediterranean Congress of Telecommunications (CMT 2019), Fez, Morocco, IEEE, Oct. 2019.

12. Sharma, A., K. Khare, and C. Shrivastava, "Dielectric resonator antenna for X band microwave application," Research & Reviews, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, No. 6, 2013.        Google Scholar

13. Upender, P. and Amarjit Kumar, "Quad-band circularly polarized tunable graphene based dielectric resonator antenna for terahertz applications," Silicon, Vol. 14, No. 10, 5513-5526, Jul. 2022.
doi:10.1007/s12633-021-01336-5        Google Scholar

14. Ben Yamoun, J. and N. Aknin, "Broadband ring dielectric resonator antenna for satellite and 5G applications," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-3, 2020.        Google Scholar

15. Ki, Tae-Wan and Seong-Ook Pak, "Enhanced gain and miniaturisation method of stacked dielectric resonator antenna using metallic cap," IET Microwaves Antennas & Propagation, Vol. 13, No. 8, 1198-1201, Jul. 2019.
doi:10.1049/iet-map.2018.5606        Google Scholar

16. Mani, S. and L. Edeswaran, "High gain multiband stacked DRA for WiMax and WLAN applications," American Journal of Applied Sciences, Vol. 14, No. 8, 779-785, 2017.
doi:doi: 10.3844/ajassp.2017.779.785        Google Scholar

17. Sun, Wen-Jian, W.-W. Yang, P. Chu, and J.-X. Chen, "Design of a wideband circularly polarized stacked dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 591-595, Jan. 2019.
doi:10.1109/TAP.2018.2874678        Google Scholar

18. Yang, Mei-Di, Yong-Mei Pan, Yu-Xiang Sun, and Kwok-Wa Leung, "Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1145-1150, Feb. 2020.
doi:10.1109/TAP.2019.2938629        Google Scholar

19. Ali, Irfan, M. H. Jamaluddin, A. Gaya, and H. A. Rahim, "A dielectric resonator antenna with enhanced gain and bandwidth for 5G applications," Sensors, Vol. 20, No. 3, 675, Feb. 2020.
doi:10.3390/s20030675        Google Scholar

20. Mauro, G. S., G. Castorina, F. A. Morabito, L. Di Donato, and G. Sorbello, "Effects of lossy background and rebars on antennas embedded in concrete structures," Microwave and Optical Technology Letters, Vol. 58, No. 11, 2653-2656, Nov. 2016.
doi:10.1002/mop.30111        Google Scholar

21. Wang, Fan, Chuanfang Zhang, Houjun Sun, and Yu Xiao, "Ultra-wideband dielectric resonator antenna design based on multilayer form," International Journal of Antennas and Propagation, Vol. 2019, 2019.
doi:10.1155/2019/4391474        Google Scholar

22. Guo, Y. X., Y. F. Ruan, and X. Q. Shi, "Wide band stacked the compact circularly-polarized hollow rectangular dielectric resonator antenna with an underlaid quadrature coupler," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 288-293, Jan. 2011.
doi:10.1109/TAP.2010.2090454        Google Scholar

23. Kumar, Rajkishor and R. K. Chaudhary, "Stacked rectangular dielectric resonator antenna with different volumes for wideband circular polarization coupled with step-shaped conformal strip," International Journal of RF and Microwave Computer-aided Engineering, Vol. 29, No. 6, e21667, Jun. 2019.
doi:10.1002/mmce.21667        Google Scholar

24. Yang, Mei-Di, Yong-Mei Pan, Yu-Xiang Sun, and Kwok-Wa Leung, "Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1145-1150, Feb. 2020.
doi:10.1109/TAP.2019.2938629        Google Scholar

25. Legier, J. F., P. Kennis, S. Toutain, and J. Citerne, "Resonant frequencies of rectangular dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 9, 1031-1034, 1980.
doi:10.1109/TMTT.1980.1130216        Google Scholar

26. Mongia, R. K., A. Ittibipoon, and M. Cuhaci, "Low-profile dielectric resonator antennas using a very high permittivity material," Electronics Letters, Vol. 30, No. 17, 1362-1363, Aug. 1994.
doi:10.1049/el:19940924        Google Scholar

27. Marcatili, E. A. C., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell System Technical Journal, Vol. 48, No. 7, 2071-2103, 1969.
doi:10.1002/j.1538-7305.1969.tb01166.x        Google Scholar

28. Walsh, Andrew G., S. Christopher, D. Young, and S. A. Long, "An investigation of stacked and embedded cylindrical dielectric resonator antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 130-133, 2006.
doi:10.1109/LAWP.2006.873935        Google Scholar

29. Morabito, Andrea Francesco, A. Di Carlo, L. Di Donato, T. Isernia, and G. Sorbello, "Extending spectral factorization to array pattern synthesis including sparseness, mutual coupling, and mounting-platform effects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4548-4559, Jul. 2019.
doi:10.1109/TAP.2019.2905977        Google Scholar