1. Chiaraviglio, Luca, Cristian Di Paolo, and Nicola Blefari-Melazzi, "5G network planning under service and EMF constraints: formulation and solutions," IEEE Transactions on Mobile Computing, Vol. 21, No. 9, 3053-3070, Sept. 1 2022.
doi:10.1109/TMC.2021.3054482 Google Scholar
2. Malandrino, Francesco, Emma Chiaramello, Marta Parazzini, and Carla Fabiana Chiasserini, "Performance and EMF exposure trade-offs in human-centric cell-free networks," 2022 20th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT 2022), 377-382, Sep. 19-23 2022.
3. Ibrani, Mimoza, Enver Hamiti, Luan Ahma, and Besfort Shala, "Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios," AEU-International Journal of Electronics and Communications, Vol. 70, No. 6, 808-813, 2016.
doi:10.1016/j.aeue.2016.03.007 Google Scholar
4. Hamiti, Enver, Luan Ahma, Miranda Kukaj, and Elmaz Maloku, "Measurements and analysis of personal exposure to RF-EMF inside and outside school buildings: A case study at a kosovo school," IEEE Access, Vol. 10, 52866-52875, 2022.
doi:10.1109/ACCESS.2022.3174223 Google Scholar
5. Gallastegi, Mara, Anke Huss, Loreto Santa-Marina, Juan J. Aurrekoetxea, Monica Guxens, Laura Ellen Birks, Jesus Ibarluzea, David Guerra, Martin Roeoesli, and Ana Jimenez-Zabala, "Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements," Environment International, Vol. 118, 60-69, Sep. 2018.
doi:10.1016/j.envint.2018.05.028 Google Scholar
6. Panagiotakopoulos, Theodor, Yiannis Kiouvrekis, Loukas-Moysis Misthos, and Constantine Kappas, "RF-EMF exposure assessments in greek schools to support ubiquitous IOT-based monitoring in smart cities," IEEE Access, Vol. 11, 7145-7156, 2023.
doi:10.1109/ACCESS.2023.3237970 Google Scholar
7. Ibrani, Mimoza, Enver Hamiti, Luan Ahma, Rreze Halili, Vlerar Shala, and Doruntine Berisha, "Narrowband frequency-selective up-link and down-link evaluation of daily personal-exposure induced by wireless operating networks," Wireless Networks, Vol. 23, No. 4, 1191-1200, May 2017.
doi:10.1007/s11276-016-1215-1 Google Scholar
8. Ramirez-Vazquez, Raquel, Isabel Escobar, Guy A. E. Vandenbosch, Francisco Vargas, David A. Caceres-Monllor, and Enrique Arribas, "Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review," Environmental Research, Vol. 218, Feb. 1 2023.
doi:10.1016/j.envres.2022.114979 Google Scholar
9. Celaya-Echarri, Mikel, Leyre Azpilicueta, Victoria Ramos, Peio Lopez-Iturri, and Francisco Falcone, "Empirical and modeling approach for environmental indoor RF-EMF assessment in complex high-node density scenarios: public shopping malls case study," IEEE Access, Vol. 9, 46755-46775, 2021.
doi:10.1109/ACCESS.2021.3067852 Google Scholar
10. Iakovidis, Serafeim, Christos Apostolidis, Athanasios Manassas, and Theodoros Samaras, "Electromagnetic fields exposure assessment in europe utilizing publicly available data," Sensors, Vol. 22, No. 21, Nov. 2022.
doi:10.3390/s22218481 Google Scholar
11. Celaya-Echarri, Mikel, Leyre Azpilicueta, Peio Lopez-Iturri, Erik Aguirre, Silvia De Miguel-Bilbao, Victoria Ramos, and Francisco Falcone, "Spatial characterization of personal rf-emf exposure in public transportation buses," IEEE Access, Vol. 7, 33038-33054, 2019.
doi:10.1109/ACCESS.2019.2903405 Google Scholar
12. Betta, Giovanni, Domenico Capriglione, Gianni Cerro, Gianfranco Miele, Marzia Salone D'Amata, Darko Suka, Predrag Pejovic, and Mirjana Simic-Pejovic, "On the measurement of human exposure to cellular networks," IEEE Instrumentation & Measurement Magazine, Vol. 23, No. 9, 5-13, Dec. 2020.
doi:10.1109/mim.2020.9289066 Google Scholar
13. Bhatt, Chhavi Raj, Stuart Henderson, Chris Brzozek, and Geza Benke, "Instruments to measure environmental and personal radiofrequency-electromagnetic field exposures: An update," Physical and Engineering Sciences in Medicine, Jun. 23 2022.
doi:10.1007/s13246-022-01146-y Google Scholar
14. Ramirez-Vazquez, Raquel, Isabel Escobar, Antonio Martinez-Plaza, and Enrique Arribas, "Comparison of personal exposure to radiofrequency electromagnetic fields from Wi-Fi in a spanish university over three years," Science of The Total Environment, Vol. 858, No. 3, Feb. 1 2023.
doi:10.1016/j.scitotenv.2022.160008 Google Scholar
15. Fellan, A., C. Hobelsberger, C. Schellenberger, D. Lindenschmitt, and H. D. Schotten, "Electromagnetic field strength measurements in a private 5G campus network," Proceedings of the 18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, 11-17, 2022. Google Scholar
16. Kunter, F., "Students exposure to radio frequency electromagnetic fields in Marmara University," Marmara Fen Bilimleri Dergisi, Vol. 27, No. 1, 32-36, 2015.
doi:10.7240/mufbed.70492 Google Scholar
17. Alahidin, M. F., N. A. Zakaria, Z. Ismail Khan, N. Emileen Abd Rashid, K. K. M. Shariff, and S. A. Enche Ab Rahim, "Electromagnetic wave exposure level from mobile base station around residential area," 2020 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, Dec. 14-16 2020.
doi:10.1109/RFM50841.2020.9344783
18. Keskinkilinc, Ugur, Abdullah Arikan, Busra Kizilaslan, Sinem Tekin, Turgut Komurkara, Elif Kilinc, Teoman Karadag, Ismail Can Dikmen, H. Gokhan Bakir, Kubra Kartaca, and Teymuraz Abbasov, "Electromagnetic field pollution measurements and mappings in a university settlement," 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Inonu Univ, Malatya, Sep. 28-30 2018.
19. Kljajic, Dragan, Nikola Djuric, and Karolina Kasas-Lazetic, "Comparative EMF monitoring campaign over the campus area of the University of Novi Sad," Proceedings of 18th International Conference on Smart Technologies (IEEE Eurocon 2019), Novi Sad, Serbia, Jul. 01-04 2019.
doi:10.1109/eurocon.2019.8861562
20. Karpat, Esin and M. Rafet Bakcan, "Measurement and prediction of electromagnetic radiation exposure level in a university," Tehnicki Vjesnik-technical Gazette, Vol. 29, No. 2, 449-455, Feb. 2022.
doi:10.17559/TV-20200418183308 Google Scholar
21. Morimoto, Ryota, Akimasa Hirata, Ilkka Laakso, Marvin C. Ziskin, and Kenneth R. Foster, "Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz," Physics in Medicine and Biology, Vol. 62, No. 5, 1676-1699, Mar. 7 2017.
doi:10.1088/1361-6560/aa5251 Google Scholar
22. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 KHz to 300 GHz)," Health Physics, Vol. 118, No. 5, 483-524, May 2020.
doi:10.1097/HP.0000000000001210 Google Scholar
23. Tyrakis, Charilaos, Kiki Theodorou, Yiannis Kiouvrekis, Aris Alexias, and Constantin Kappas, "Radiofrequency exposure levels in greece," Bioelectromagnetics, Vol. 44, No. 1-2, 17-25, Jan. 2023.
doi:10.1002/bem.22434 Google Scholar
24. Paul, Gouri S., Kaushik Mandal, Juin Acharjee, and Partha P. Sarkar, "Reduction of mobile phone radiation exposure using multi-stopband frequency selective surface," Progress In Electromagnetics Research M, Vol. 83, 9-18, 2019.
doi:10.2528/PIERM19041401 Google Scholar
25. Paul, Gouri Shankar and Kaushik Mandal, "Polarization-insensitive and angularly stable compact ultrawide stop-band frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1917-1921, Sep. 2019.
doi:10.1109/LAWP.2019.2933545 Google Scholar