Vol. 115
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-21
Influence of the Spatial Distribution of Molecular Magnetic Moments on the Radiation Characteristics of Rotating Permanent Magnet Antennas
By
Progress In Electromagnetics Research Letters, Vol. 115, 71-79, 2024
Abstract
Taking into account the radiation characteristics of rotating permanent magnet antennas, the influence of the spatial distribution of molecular magnetic moments on the radiation characteristics was verified by performing theoretical calculations and simulations. First, the magnetic field distribution of arbitrarily shaped permanent magnets was derived based on the Biot-Savart Law, and the concentration degree of the molecular magnetic moments to the connection of the two magnetic poles and the comprehensive performance evaluation index were defined. The theoretical model to analyze the performance of permanent magnets was also established as above. Second, by controlling volume and rotational inertia to be the same, three types of permanent magnets were calculated. Finally, the optimization design process was proposed. Three preferable solutions were systematically compared and analyzed taking radially magnetized cylindrical permanent magnets as an example. Our work provides valuable insights into the design of mechanical antenna radiation sources.
Citation
Tiantian Li, Bin Li, and Jin Meng, "Influence of the Spatial Distribution of Molecular Magnetic Moments on the Radiation Characteristics of Rotating Permanent Magnet Antennas," Progress In Electromagnetics Research Letters, Vol. 115, 71-79, 2024.
doi:10.2528/PIERL23102709
References

1. Fawole, Olutosin Charles and Massood Tabib-Azar, "An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6927-6936, Dec. 2017.
doi:10.1109/TAP.2017.2761555

2. Burch, Hunter C., Alexandra Garraud, Michael F. Mitchell, Robert C. Moore, and David P. Arnold, "Experimental generation of ELF radio signals using a rotating magnet," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6265-6272, Nov. 2018.
doi:10.1109/TAP.2018.2869205

3. Shi, Wei, Qiang Zhou, and Bin Liu, "Performance analysis of spinning magnet as mechanical antenna," Acta Physica Sinica, Vol. 68, No. 18, Sep. 2019.
doi:10.7498/aps.68.20190339

4. Ding, H., Darpa Mechanical Antenna Project May Set Off a Military Communications Revolution, 71-73, Conmilit, 2017.

5. Zhang, Feng, Zhaoqian Gong, Shun Wang, Yicai Ji, and Guangyou Fang, "A rotating-permanent-magnet array for ULF through-the-sea magnetic communications," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2300-2310, Mar. 2023.
doi:10.1109/TAP.2023.3240068

6. Golkowski, Mark, Jaedo Park, James Bittle, Bhanu Babaiahgari, Ronald A. L. Rorrer, and Zbigniew Celinski, "Novel mechanical magnetic shutter antenna for ELF/VLF radiation," 2018 IEEE Antenn. and Propag. Society International Symposium on Antenn. and Propag. & USNC/URSI National Radio Science Meeting, 65-66, Boston, Ma, Jul. 2018.

7. Dong, Cunzheng, Yifan He, Menghui Li, Cheng Tu, Zhaoqiang Chu, Xianfeng Liang, Huaihao Chen, Yuyi Wei, Mohsen Zaeimbashi, Xinjun Wang, Hwaider Lin, Yuan Gao, and Nian X. Sun, "A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 398-402, Mar. 2020.
doi:10.1109/LAWP.2020.2968604

8. Kemp, Mark A., Matt Franzi, Andy Haase, Erik Jongewaard, Matthew T. Whittaker, Michael Kirkpatrick, and Robert Sparr, "A high Q piezoelectric resonator as a portable VLF transmitter," Nature Communications, Vol. 10, No. 1, 1715-1721, Apr. 2019.
doi:10.1038/s41467-019-09680-2

9. Cui, Yong, Ming Wu, Xiao Song, Yu-Ping Huang, Qi Jia, Yun-Fei Tao, and Chen Wang, "Research progress of small low-frequency transmitting antenna," Acta Physica Sinica, Vol. 69, No. 20, 1-13, Oct. 2020.
doi:10.7498/aps.69.20200792

10. Fereidoony, Foad, Srinivas Prasad M. Nagaraja, Jean Paul Dytioco Santos, and Yuanxun Ethan Wang, "Efficient ULF transmission utilizing stacked magnetic pendulum array," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, 585-597, Jan. 2022.
doi:10.1109/TAP.2021.3098596

11. Rezaei, Hossein, Victor Khilkevich, Shaohui Yong, Daniel Steven Stutts, and David Pommerenke, "Mechanical magnetic field generator for communication in the ULF range," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2332-2339, Mar. 2020.
doi:10.1109/TAP.2019.2955069

12. Liu, Yu, Shuhong Gong, Qian Liu, and Muyu Hou, "A mechanical transmitter for undersea magnetic induction communication," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6391-6400, Oct. 2021.
doi:10.1109/TAP.2021.3070657

13. Zhou, Qiang, Fu Qiang Yao, Wei Shi, Zhen Yang Hao, Huan Zheng, Bin Liu, and H. E. Panfeng, "Research on mechanism and key technology of mechanical antenna for a low-frequency transmission," Scientia Sinica Technologica, Vol. 50, No. 1, 69-84, 2020.
doi:10.1360/SST-2019-0118

14. Bickford, James A., Amy E. Duwel, Marc S. Weinberg, Ronald S. McNabb, Daniel K. Freeman, and Paul A. Ward, "Performance of electrically small conventional and mechanical antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2209-2223, Apr. 2019.
doi:10.1109/TAP.2019.2893329

15. Zhang, Feng, Faxiao Sun, Xiaodong Qu, Zhaoqian Gong, Yicai Ji, and Guangyou Fang, "Research on low frequency communication technology based on rotating permanent magnet," Journal of Electronics & Information Technology, Vol. 44, No. 6, 2151-2157, Jun. 2022.
doi:10.11999/JEIT210274

16. Hayt, Jr., William H. and John A. Buck, Engineering Electromagnetics, 8th Ed., McGraw-Hill, New York, NY, USA, 2010.