Vol. 116
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-08
Low Loss Anisotropic Circular Near-Zero Flexible Metasurface for Gain Enhancement
By
Progress In Electromagnetics Research Letters, Vol. 116, 55-62, 2024
Abstract
This paper proposes a new low loss high dielectric substrate made of CaTiO3 incorporated butyl rubber (CBR). The synthesized material has a dielectric loss of 0.0048 and dielectric constant of 11.7. A novel circular anisotropic structure is used in the design of metamaterial unit cell. This metamaterial structure exhibits near-zero refractive index at 2.4 GHz. The extraction of refractive index is done from the scattering parameters using generalised sheet transition condition. An array of 3 × 3 unit cell is the metasurface superstrate, which is proposed for the gain enhancement. It is kept above the microstrip patch antenna working at 2.4 GHz. The proposed superstrate provides a gain enhancement of 4.6 dB. The height between the antenna and the superstrate is optimized to 0.088λ. The enhancement of gain on metasurface substrate with different loss tangents is analyzed. The simulation and measurement results of antenna with superstrate show good agreement with a peak gain of 7.6 dBi. The radiation efficiency of the antenna is increased by 42%.
Citation
Arun Shaji B K, Muhammed Hunize C V, Anju Pradeep, and Murali K P, "Low Loss Anisotropic Circular Near-Zero Flexible Metasurface for Gain Enhancement," Progress In Electromagnetics Research Letters, Vol. 116, 55-62, 2024.
doi:10.2528/PIERL23110801
References

1. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617, Mar. 2005.
doi:10.1103/PhysRevE.71.036617

2. Manikandan, R., P. H. Rao, and P. K. Jawahar, "Gain enhancement of horn antenna using meta surface lens," Advanced Electromagnetics, Vol. 7, No. 4, 27-33, 2018.
doi:10.7716/aem.v7i4.614

3. Gao, Xi, Yan Zhang, and Simin Li, "High refractive index metamaterial superstrate for microstrip patch antenna performance improvement," Frontiers in Physics, Vol. 8, Sep. 18 2020.
doi:10.3389/fphy.2020.580185

4. Seyedsharbaty, Mir Mohsen and Ramazan Ali Sadeghzadeh, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," Optical and Quantum Electronics, Vol. 49, No. 6, Jun. 2017.
doi:10.1007/s11082-017-1052-1

5. Mark, Robert, Neha Rajak, Kaushik Mandal, and Soma Das, "Isolation and gain enhancement using metamaterial based superstrate for MIMO applications," Radioengineering, Vol. 28, No. 4, 689-695, Dec. 2019.
doi:10.13164/re.2019.0689

6. Li, Dongying, Zsolt Szabo, Xianming Qing, Er-Ping Li, and Zhi Ning Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, Dec. 2012.
doi:10.1109/TAP.2012.2213231

7. Zhang, Lei, Xiang Wan, Shuo Liu, Jia Yuan Yin, Qian Zhang, Hao Tian Wu, and Tie Jun Cui, "Realization of low scattering for a high-gain fabry-perot antenna using coding metasurface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3374-3383, Jul. 2017.
doi:10.1109/TAP.2017.2700874

8. Samantaray, Diptiranjan and Somak Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, Sept. 2020.
doi:10.1109/TAP.2020.2990280

9. Arun Shaji, B. K., A. Pradeep, and P. Mohanan, "Fractal inspired metamaterial superstrate for gain enhancement," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 11, No. 4, 271-278, 2021.
doi:10.15866/irecap.v11i4.20861

10. Kumar, Gaurav, Basudeb Ghosh, Soumyabrata Chakrbarty, and Milind B. Mahajan, "Gain and bandwidth enhancement using NZRI - metasurface," IETE Journal of Research, 2022.
doi:10.1080/03772063.2022.2055662

11. Xu, He-Xiu, Guang-Ming Wang, and Tong Cai, "Miniaturization of 3-D anistropic zero-refractive-index metamaterials with application to directive emissions," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3141-3149, Jun. 2014.
doi:10.1109/TAP.2014.2314475

12. Li, Jinxin, Tayeb A Denidni, and Qingsheng Zeng, "A compact gain-enhancement patch antenna based on near-zero-index metamaterial superstrate," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, 2016.

13. Shaw, Tarakeswar, Deepanjan Bhattacharjee, and Debasis Mitra, "Gain enhancement of slot antenna using zero-index metamaterial superstrate," International Journal of RF and Microwave Computer-aided Engineering, Vol. 27, No. 4, May 2017.
doi:10.1002/mmce.21078

14. Singh, Amit K., Mahesh P. Abegaonkar, and Shiban K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864

15. Qin, Pei-Yuan, Lu-Yang Ji, Shu-Lin Chen, and Yingjie Jay Guo, "Dual-polarized wideband fabry-perot antenna with quad-layer partially reflective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 551-554, Apr. 2018.
doi:10.1109/LAWP.2018.2802439

16. Singh, Amit K., Mahesh P. Abegaonkar, and Shiban K. Koul, "Wide angle beam steerable high gain flat top beam antenna using graded index metasurface lens," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6334-6343, Oct. 2019.
doi:10.1109/TAP.2019.2923075

17. Shaji, Arun B. K. and Anju Pradeep, "Complementary metamaterial superstrate for wide band high gain antenna," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS 2022), Natl Inst Technol, Rourkela, Jun. 05-08 2022.
doi:10.1109/WAMS54719.2022.9847735

18. Meriche, Mohammed Amin, Hussein Attia, Abderraouf Messai, Sheikh Sharif Iqbal Mitu, and Tayeb Ahmed Denidni, "Directive wideband cavity antenna with single-layer meta-superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1771-1774, Sep. 2019.
doi:10.1109/LAWP.2019.2929579

19. Zheng, Yuejun, Jun Gao, Yulong Zhou, Xiangyu Cao, Huanhuan Yang, Sijia Li, and Tong Li, "Wideband gain enhancement and RCS reduction of fabry-perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896

20. Lee, Kanghyeok, Ha Young Hong, Wonwoo Lee, Semin Jo, Hong Soo Park, Junhyuk Yang, Changkun Park, Hojin Lee, and Sun K. Hong, "Broadband metasurface superstrate for polarization-independent wave focusing and gain enhancement at Ka-band," Scientific Reports, Vol. 12, No. 1, Jul. 14 2022.
doi:10.1038/s41598-022-16037-1

21. Ashfaq, Mubashir, Shahid Bashir, Syed Imran Hussain Shah, Nisar Ahmad Abbasi, Hatem Rmili, and Muhammad Abbas Khan, "5G antenna gain enhancement using a novel metasurface," CMC-computers Materials & Continua, Vol. 72, No. 2, 3601-3611, 2022.
doi:10.32604/cmc.2022.025558

22. Rajesh, S., K. P. Murali, and R. Ratheesh, "Preparation and characterization of high permittivity and low loss PTFE/CaTiO microwave laminates," Polymer Composites, Vol. 30, No. 10, 1480-1485, Oct. 2009.
doi:10.1002/pc.20716

23. Verma, A. and D. C. Dube, "Measurement of dielectric parameters of small samples at X-band frequencies by cavity perturbation technique," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 5, 2120-2123, Oct. 2005.
doi:10.1109/TIM.2005.854249

24. Liu, Zhen-Guo, Wei-Bing Lu, and Wu Yang, "Enhanced bandwidth of high directive emission fabry-perot resonator antenna with tapered near-zero effective index using metasurface," Scientific Reports, Vol. 7, Sep. 13 2017.
doi:10.1038/s41598-017-11141-z

25. Almizan, Hayder, Zaid A. Abdul Hassain, Taha A. Elwi, and Saif M. Al-Sabti, "Controlling gain enhancement using a reconfigurable metasurface layer," 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, Mar. 25-27 2021.
doi:10.1109/ATEE52255.2021.9425037

26. Saleh, Amany M., K. R. Mahmoud, Ibrahim I. Ibrahim, and Ahmed M. Attiya, "Analysis of anisotropic metasurfaces using generalized sheet transition condition," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 5, 661-676, 2016.
doi:10.1080/09205071.2016.1143407