Vol. 118
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-09
Broadband Bowtie-Based Log-Periodic Array Antenna via GIPD Process for 5G mm -Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 118, 55-61, 2024
Abstract
In this paper, a broadband bowtie-based log-periodic array antenna is proposed and investigated for 5G millimeter wave (mm-wave) applications. Using a Glass Integrated Passive Device (GIPD) process, the proposed antenna is implemented on a high dielectric constant glass substrate. To address the directional radiation issues associated with the traditional straight connection, the proposed antenna uses a crisscross connection effect with carefully spaced three dipole elements. Furthermore, the use of bowtie-based dipole offers a wide bandwidth advantage. The study also examines the effects of changes in key parameters on critical antenna features. The feeding structure uses a combination of coplanar waveguide (CPW) and microstrip line to strip line. For demonstration, a prototype antenna is optimized, fabricated and measured. The measurement results show that the 10 dB impedance bandwidth of the proposed antenna is from 21.5 to 36.1 GHz, and the gain is higher than 5.63 dBi.
Citation
Jixuan Li, Zenghui Xiang, Xuan Chen, Mi Xu, and Jinhui Li, "Broadband Bowtie-Based Log-Periodic Array Antenna via GIPD Process for 5G mm -Wave Applications," Progress In Electromagnetics Research Letters, Vol. 118, 55-61, 2024.
doi:10.2528/PIERL23121402
References

1. Wang, Xiong, Linghe Kong, Fanxin Kong, Fudong Qiu, Mingyu Xia, Shlomi Arnon, and Guihai Chen, "Millimeter wave communication: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 20, No. 3, 1616-1653, 2018.
doi:10.1109/COMST.2018.2844322

2. Kausar, Shafaq, Ahmed Kausar, Hani Mehrpouyan, Muhammad Usman Hadi, and Salahuddin Tariq, "Comparative analysis of smart beam-steering antennas for mm-wave communication systems & 5G," Progress In Electromagnetics Research B, Vol. 98, 147-164, 2023.

3. 3GPP. 5G NR Specs. Accessed: 2017. [Online], Available: http://www.3gpp.org/DynaReport/38-series.html, Apr. 2022.

4. Inomata, Minoru, Tetsuro Imai, Daisuke Kitayama, Toshiki Sayama, Osamu Kagaya, Hideaki Shoji, Shoichi Takeuchi, Kiyoshi Nobuoka, Shoji Itoh, Hideshi Murai, Arne Simonsson, and Peter Okvist, "Downlink performance using vehicle glass mounted antenna for 28-GHz band in high mobility environment," 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 2019.
doi:10.1109/vtcspring.2019.8746636

5. Perez, Pablo, Daniel Corregidor, Emilio Garrido, Ignacio Benito, Ester Gonzalez-Sosa, Julian Cabrera, Daniel Berjon, Cesar Diaz, Francisco Moran, Narciso Garcia, Josue Igual, and Jaime Ruiz, "Live free-viewpoint video in immersive media production over 5G networks," IEEE Transactions on Broadcasting, Vol. 68, No. 2, 439-450, Jun. 2022.
doi:10.1109/TBC.2022.3154612

6. Jo, Ohyun, Wonpyo Kwon, and Wonbin Hong, "Achieving 360° coverage dynamic and switchable beamforming through resource-efficient switchable antennas for future mmwave IoT devices," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 8982-8991, Sep. 2021.
doi:10.1109/TIE.2020.3020022

7. Vaezi, Mojtaba, Amin Azari, Saeed R. Khosravirad, Mahyar Shirvanimoghaddam, M. Mahdi Azari, Danai Chasaki, and Petar Popovski, "Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G," IEEE Communications Surveys & Tutorials, Vol. 24, No. 2, 1117-1174, 2022.
doi:10.1109/COMST.2022.3151028

8. Kakutani, Takenori, Yuya Suzuki, Meiten Koh, Shoya Sekiguchi, Satoko Matsumura, Kota Oki, Shoko Mishima, Nobuhiro Ishikawa, Toshiyuki Ogata, Serhat Erdogan, Muhammad Ali, Mohanalingam Kathaperumal, and Madhavan Swaminathan, "Material design and high frequency characterization of novel ultra-low loss dielectric material for 5G and 6G applications," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), 538-543, San Diego, CA, USA, 2021.
doi:10.1109/ECTC32696.2021.00096

9. Watanabe, Atom O., Tong-Hong Lin, Muhammad Ali, Yiteng Wang, Vanessa Smet, Pulugurtha Markondeya Raj, Manos M. Tentzeris, Rao R. Tummala, and Madhavan Swaminathan, "Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5082-5092, Dec. 2020.

10. Zhang, Jin, Shuai Zhang, and Gert Frolund Pedersen, "Wideband endfire on-glass array for 5G handset applications," 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 1-4, Honolulu, HI, USA, 2019.

11. Wang, Dongwei, Matthias Nickel, Peter Schumacher, Ersin Polat, Henning Tesmer, Rolf Jakoby, and Holger Maune, "A planar quasi yagi-uda antenna designed for liquid crystal based end-fire phased arrays," 2021 IEEE Radio and Wireless Symposium (RWS), 164-167, San Diego, CA, USA, 2021.

12. Xia, Chenhui, Hui Wang, Gang Wang, and Xuefei Ming, "Advanced packaging of 3D fan-out RF microsystem for 5G IoT communication," 2020 21st International Conference on Electronic Packaging Technology (ICEPT), 1-4, Guangzhou, China, 2020.

13. Youn, Sangwoon, Doyoung Jang, Nak Kyoung Kong, and Hosung Choo, "Design of a printed 5G monopole antenna with periodic patch director on the laminated window glass," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 297-301, Feb. 2022.
doi:10.1109/LAWP.2021.3128648

14. Gao, Min, Yan Li, Shicheng Yang, Chunbang Wu, Buning Tian, and Jianping An, "Wide band millimeter wave circular polarization antenna based on glass wafer substrate," 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 103-105, Chongqing, China, Nov. 2021.
doi:10.1109/IMWS-AMP53428.2021.9644002

15. Chang, Yiu-Hsiang, Jie-Chi Chen, Wei Chung, Wei-Yu Li, Po-Tsung Boris Shih, Anthony Ng'oma, Chieh Yang, Meng-Chi Huang, Hung-Yi Lin, Chia-Hsuan Wang, Hou-Tzu Huang, and Cheolbok Kim, "A novel fabrication process and measurement results of a 28GHz glass antenna with single TGV for 5G communication applications," 2019 14th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 112-115, Taipei, Taiwan, Oct. 2019.
doi:10.1109/impact47228.2019.9024968

16. SCHOOT technology, AF32 glass, https://www.schott.com/en-us/products/af-32-eco-p1000308, 2023.

17. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2016.