Vol. 119
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-04-03
Comparative Study of High-Resolution RCS Models of Motorcyclists in W-Band Extracted from Measurements
By
Progress In Electromagnetics Research Letters, Vol. 119, 21-26, 2024
Abstract
Reliably modeling vulnerable road users (VRUs) such as motorcyclists in the virtual environment is indispensable in developing over-the-air (OTA) validation test methods. However, there are still challenges arising from many possible variations of VRUs, which may participate in the traffic scenarios. Therefore, it is essential to model them precisely and demonstrate consistency between virtual evaluation and reality. To achieve this goal, the VRUs must be modeled based on their backscattering behavior which can be prepared based on high-resolution (HR) radar cross section (RCS) measurements. This work presents the backscattering behavior of motorcyclists as one of the critical VRUs in traffic scenarios. The extracted model of a motorcyclist is analyzed and compared based on HR-RCS measurements with different motorcycle variants. This evaluation is a prerequisite for developing a realistic model of VRUs and ensuring an adequate level of accuracy.
Citation
Sevda Abadpour, Mario Pauli, Jan Siska, Nils Pohl, and Thomas Zwick, "Comparative Study of High-Resolution RCS Models of Motorcyclists in W-Band Extracted from Measurements," Progress In Electromagnetics Research Letters, Vol. 119, 21-26, 2024.
doi:10.2528/PIERL24010804
References

1. Abadpour, Sevda, Modeling Backscattering Behavior of Vulnerable Road Users Based on High-resolution Radar Measurements, Vol. 103, 158, KIT Scientific Publishing, Nov. 2023.

2. Vargas, Jorge, Suleiman Alsweiss, Onur Toker, Rahul Razdan, and Joshua Santos, "An overview of autonomous vehicles sensors and their vulnerability to weather conditions," Sensors, Vol. 21, No. 16, 5397, Aug. 2021.
doi:10.3390/s21165397

3. Zang, Shizhe, Ming Ding, David Smith, Paul Tyler, Thierry Rakotoarivelo, and Mohamed Ali Kaafar, "The impact of adverse weather conditions on autonomous vehicles: How rain, snow, fog, and hail affect the performance of a self-driving car," IEEE Vehicular Technology Magazine, Vol. 14, No. 2, 103-111, Jun. 2019.
doi:10.1109/MVT.2019.2892497

4. Heinzler, Robin, Philipp Schindler, Jürgen Seekircher, Werner Ritter, and Wilhelm Stork, "Weather influence and classification with automotive lidar sensors," 2019 IEEE Intelligent Vehicles Symposium (IV), 1527-1534, Paris, France, Jun. 2019.

5. Murad, M., I. Bilik, M. Friesen, J. Nickolaou, J. Salinger, K. Geary, and J. S. Colburn, "Requirements for next generation automotive radars," 2013 IEEE Radar Conference (RadarCon13), 1-6, Ottawa, Canada, 2013.

6. Dubey, Anand, Avik Santra, Jonas Fuchs, Maximilian Luebke, Robert Weigel, and Fabian Lurz, "A Bayesian framework for integrated deep metric learning and tracking of vulnerable road users using automotive radars," IEEE Access, Vol. 9, 68758-68777, 2021.
doi:10.1109/ACCESS.2021.3077690

7. Dickmann, Juergen, Nils Appenrodt, Hans-Ludwig Bloecher, C. Brenk, Thomas Hackbarth, Markus Hahn, Jens Klappstein, Marc Muntzinger, and Alfons Sailer, "Radar contribution to highly automated driving," 2014 44th European Microwave Conference, 1715-1718, Rome, Italy, Oct. 2014.

8. Waldschmidt, Christian and Holger Meinel, "Future trends and directions in radar concerning the application for autonomous driving," 2014 11th European Radar Conference, 1719-1722, Rome, Italy, Oct. 2014.

9. Abadpour, Sevda, Mario Pauli, Christian Schyr, Florian Klein, Rene Degen, Jan Siska, Nils Pohl, and Thomas Zwick, "Angular resolved RCS and Doppler analysis of human body parts in motion," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 4, 1761-1771, Apr. 2023.
doi:10.1109/TMTT.2022.3218304

10. Schubert, Eugen, Frank Meinl, Martin Kunert, and Wolfgang Menzel, "High resolution automotive radar measurements of vulnerable road users - Pedestrians & cyclists," 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, Heidelberg, Germany, Apr. 2015.

11. Abadpour, Sevda, Sören Marahrens, Mario Pauli, Jan Siska, Nils Pohl, and Thomas Zwick, "Backscattering behavior of vulnerable road users based on high-resolution RCS measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 3, 1582-1593, Mar. 2022.
doi:10.1109/TMTT.2021.3131156

12. Reyes-Muñoz, Angélica and Juan Guerrero-Ibáñez, "Vulnerable road users and connected autonomous vehicles interaction: A survey," Sensors, Vol. 22, No. 12, 4614, Jun. 2022.
doi:10.3390/s22124614

13. Pohl, Nils, Timo Jaeschke, Simon Küppers, Christian Bredendiek, and Dirk Nüßler, "A compact ultra-wideband mmWave radar sensor at 80 GHz based on a SiGe transceiver chip (Focused session on highly-integrated millimeter-wave radar sensors in SiGe BiCMOS technologies)," 2018 22nd International Microwave and Radar Conference (MIKON), 345-347, Poznan, Poland, May 2018.

14. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles, SciTech Publishing, Inc., 2010.

15. Geary, Kevin, Joseph S. Colburn, Arthur Bekaryan, Shuqing Zeng, Bakhtiar Litkouhi, and Mohannad Murad, "Automotive radar target characterization from 22 to 29 GHz and 76 to 81 GHz," 2013 IEEE Radar Conference (RadarCon13), 1-6, Ottawa, ON, Canada, Apr. 2013.

16. Köhler, Mike, Jürgen Hasch, Hans Ludwig Blöcher, and Lorenz-Peter Schmidt, "Feasibility of automotive radar at frequencies beyond 100 GHz," International Journal of Microwave and Wireless Technologies, Vol. 5, No. 1, 49-54, Feb. 2013.
doi:10.1017/S175907871200075X