Vol. 121
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-15
Analysis and Optimization on Weight Accuracy of the Adaptive Interference Cancellation
By
Progress In Electromagnetics Research Letters, Vol. 121, 13-18, 2024
Abstract
Weight and reference signal are utilized in adaptive interference cancellation (AIC) for vector weighting to generate the signal with equal amplitude and opposite phase to the interference signal. Weight accuracy becomes the core factor to determine the performance of the AIC. In this letter, we analyze the influence of the weight accuracy on interference suppression performance, propose the quantitative characterization method of the weight accuracy with weight noise as an indicator, study the performance and influencing factors of the weight accuracy, and propose the optimization design method. The characteristics of weight accuracy in interference cancellation are verified by theoretical simulation analysis. This work fills in the blank of weight accuracy analysis and has solid theoretical value for exploring the capability boundary of the AIC.
Citation
Yunshuo Zhang, Songhu Ge, Huanding Qin, Hongbo Liu, Zhongpu Cui, and Jin Meng, "Analysis and Optimization on Weight Accuracy of the Adaptive Interference Cancellation," Progress In Electromagnetics Research Letters, Vol. 121, 13-18, 2024.
doi:10.2528/PIERL24042901
References

1. Kiayani, Adnan, Muhammad Zeeshan Waheed, Lauri Anttila, Mahmoud Abdelaziz, Dani Korpi, Ville Syrjälä, Marko Kosunen, Kari Stadius, Jussi Ryynänen, and Mikko Valkama, "Adaptive nonlinear RF cancellation for improved isolation in simultaneous transmit-receive systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2299-2312, May 2018.

2. Sabharwal, Ashutosh, Philip Schniter, Dongning Guo, Daniel W. Bliss, Sampath Rangarajan, and Risto Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 9, 1637-1652, Sep. 2014.

3. Li, Wenlu, Zhihua Zhao, Jian Tang, Fangmin He, Yi Li, and Huan Xiao, "Performance analysis and optimal design of the adaptive interference cancellation system," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 6, 1068-1075, Dec. 2013.

4. Qin, Huanding, Fangmin He, Jin Meng, Qiaran Lu, and Zhihua Zhao, "Impact of wideband interference coupling path dispersion on performance of radio-frequency interference adaptive cancellation system," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1337-1346, 2020.

5. Makar, Gregory, Daniel Kim, Nghi Tran, and Tutku Karacolak, "Compact antennas with reduced self interference for simultaneous transmit and receive," Progress In Electromagnetics Research C, Vol. 78, 19-31, 2017.

6. Zhang, Yunshuo, Qing Wang, Huanding Qin, Fangmin He, and Jin Meng, "Stability improvement of analog adaptive self-interference cancellation system with phase compensation," Progress In Electromagnetics Research C, Vol. 95, 227-238, 2019.

7. Widrow, Bernard, John R. Glover, John M. McCool, John Kaunitz, Charles S. Williams, Robert H. Hearn, James R. Zeidler, Jr. Eugene Dong, and Robert C. Goodlin, "Adaptive noise cancelling: Principles and applications," Proceedings of the IEEE, Vol. 63, No. 12, 1692-1716, Dec. 1975.
doi:10.1109/PROC.1975.10036

8. Tian, Fu-Qing, Rong Luo, Ke-Yu Li, and Qing-Xi Ding, "New variable step-size LMS algorithm based on modified hyperbolic tangent function," Systems Engineering and Electronics, Vol. 34, No. 9, 1758-1763, Sep. 2012.

9. Huang, Hsu-Chang and Junghsi Lee, "A new variable step-size NLMS algorithm and its performance analysis," IEEE Transactions on Signal Processing, Vol. 60, No. 4, 2055-2060, Apr. 2012.

10. Mayyas, Khaled, "A variable step-size selective partial update LMS algorithm," Digital Signal Processing, Vol. 23, No. 1, 75-85, 2013.

11. Jalal, Babur, Xiaopeng Yang, Quanhua Liu, Teng Long, and Tapan K. Sarkar, "Fast and robust variable-step-size LMS algorithm for adaptive beamforming," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1206-1210, Jul. 2020.

12. Zhang, Jianwu, Hao Yu, and Qianhua Zhang, "Improved variable step-size LMS algorithm based on hyperbolic tangent function," Journal on Communications, Vol. 41, No. 11, 116-123, Nov. 2020.

13. Lu, Qiaran, Huanding Qin, Fangmin He, Yunshuo Zhang, Qing Wang, and Jin Meng, "Wideband interference cancellation system based on a fast and robust LMS algorithm," Sensors, Vol. 23, No. 18, 7871, 2023.
doi:10.3390/s23187871

14. Qin, Huanding, Jin Meng, Fangmin He, Qing Wang, and Bin Li, "Design and analysis of digital-to-analog hybrid RF interference cancellation system based on multitap structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4300-4314, 2021.

15. Cui, Zhongpu, Yaxing Li, Songhu Ge, Jiahao Zhang, Yunshuo Zhang, and Jin Meng, "Adaptive antenna array based non-cooperative co-channel interference cancellation system for ultrashort wave radios and non-ideality analysis," IEEE Transactions on Vehicular Technology, Vol. 73, No. 1, 678–690, 2024.