Vol. 123
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-11-25
Microwave Theremin Piano: SRR-Based Touchpad
By
Progress In Electromagnetics Research Letters, Vol. 123, 89-94, 2025
Abstract
Traditional touchscreens, popular for their adaptability and ease of maintenance, typically use capacitive technology where finger contact alters an electrostatic field. Here we demonstrate a touch keyboard configuration, based on a resonant-based system encompassing split-ring resonators (SRRs). These resonators, operating at the GHz spectral range, detect a finger's proximity, changing resonance frequency, but remain unaffected by distant objects - thus allowing for a parallel and independent readout of multiple keys. Specifically, 14 independent keys have been demonstrated, and the frequency-sharing protocol for parallel acquisition of sequences has been successfully implemented. The readout is performed in parallel by monitoring the transmission through a microstrip line, which is equipped with a series of distinct SRRs that resonate at different frequencies. The system has been implemented on an extremely low-cost platform, which can be transformative for similar tasks.
Supplementary Information
Citation
Vladyslav Tkach, Mykola Khobzei, Serhii Haliuk, Ihor Safronov, Andrii Samila, Vjaceslavs Bobrovs, and Dmytro Vovchuk, "Microwave Theremin Piano: SRR-Based Touchpad," Progress In Electromagnetics Research Letters, Vol. 123, 89-94, 2025.
doi:10.2528/PIERL24080404
References

1. Findlater, Leah and Jacob O. Wobbrock, "From plastic to pixels: In search of touch-typing touchscreen keyboards," Interactions, Vol. 19, No. 3, 44-49, May 2012.

2. Pickering, J. A., "Touch-sensitive screens: The technologies and their application," International Journal of Man-Machine Studies, Vol. 25, No. 3, 249-269, Sep. 1986.

3. Ouyang, Chenglan, Di Liu, Ke He, and Jiahao Kang, "Recent advances in touch sensors for flexible displays," IEEE Open Journal of Nanotechnology, Vol. 4, 36-46, 2022.

4. Anwer, Abdul Hakeem, Nishat Khan, Mohd Zahid Ansari, Sang-Soo Baek, Hoon Yi, Soeun Kim, Seung Man Noh, and Changyoon Jeong, "Recent advances in touch sensors for flexible wearable devices," Sensors, Vol. 22, No. 12, 4460, Jun. 2022.

5. Kwon, Oh-Kyong, Jae-Sung An, and Seong-Kwan Hong, "Capacitive touch systems with styli for touch sensors: A review," IEEE Sensors Journal, Vol. 18, No. 12, 4832-4846, Jun. 2018.

6. Kang, Minpyo, Jejung Kim, Bongkyun Jang, Youngcheol Chae, Jae-Hyun Kim, and Jong-Hyun Ahn, "Graphene-based three-dimensional capacitive touch sensor for wearable electronics," ACS Nano, Vol. 11, No. 8, 7950-7957, Aug. 2017.

7. Kim, Hong-Ki, Seunggun Lee, and Kwang-Seok Yun, "Capacitive tactile sensor array for touch screen application," Sensors and Actuators A: Physical, Vol. 165, No. 1, 2-7, Jan. 2011.

8. Cooper, Christopher B., Kuralamudhan Arutselvan, Ying Liu, Daniel Armstrong, Yiliang Lin, Mohammad Rashed Khan, Jan Genzer, and Michael D. Dickey, "Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers," Advanced Functional Materials, Vol. 27, No. 20, 1605630, May 2017.

9. Sarwar, Mirza S., Ryusuke Ishizaki, Kieran Morton, Claire Preston, Tan Nguyen, Xu Fan, Bertille Dupont, Leanna Hogarth, Takahide Yoshiike, Ruixin Qiu, et al. "Touch, press and stroke: A soft capacitive sensor skin," Scientific Reports, Vol. 13, No. 1, 17390, Oct. 2023.

10. Lee, Chang-Ju, Jong Kang Park, Canxing Piao, Han-Eol Seo, Jaehyuk Choi, and Jung-Hoon Chun, "Mutual capacitive sensing touch screen controller for ultrathin display with extended signal passband using negative capacitance," Sensors, Vol. 18, No. 11, 3637, Oct. 2018.

11. Boybay, Muhammed Said and Omar M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, 3039-3046, 2012.

12. Movchan, A. B. and S. Guenneau, "Split-ring resonators and localized modes," Physical Review B --- Condensed Matter and Materials Physics, Vol. 70, No. 12, 125116, Sep. 2004.

13. Naqui, Jordi, Lijuan Su, Javier Mata, and Ferran Martín, "Recent advances in the modeling of transmission lines loaded with split ring resonators," International Journal of Antennas and Propagation, Vol. 2015, No. 1, 792750, 2015.

14. García-García, J., F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," Journal of Applied Physics, Vol. 98, No. 3, 033103, Aug. 2005.

15. Hao, Xiaoyuan, Yupeng Chen, Mai Liu, Xuetao Min, Xiaomeng Cheng, Qiu Wang, Quan Xu, Xueqian Zhang, and Jiaguang Han, "Recent advances in terahertz manipulations using C-shape-split-ring-resonator metasurfaces," Advanced Optical Materials, Vol. 12, No. 15, 2302975, May 2024.

16. Moser, H. O., B. D. F. Casse, O. Wilhelmi, and B. T. Saw, "Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial," Physical Review Letters, Vol. 94, No. 6, 063901, Feb. 2005.

17. Vovchuk, Dmytro, Mykola Khobzei, and Mykhailo Khavruniak, "Sensing Properties of SRR: Influence of finger touching," 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), 799-802, Kyiv, Ukraine, Oct. 2019.

18. Liu, Weina, Haoran Sun, and Lei Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensors, Vol. 18, No. 5, 1438, 2018.

19. Puentes, Margarita, Martin Schüßler, and Rolf Jakoby, "2D sensor array based on Split Ring Resonators for monitoring of organic tissue," SENSORS, 2011 IEEE, 272-275, Limerick, Ireland, Oct. 2011.

20. Ebrahimi, Amir, Withawat Withayachumnankul, Said Al-Sarawi, and Derek Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, 2014.

21. Choi, Sungjin, Seunghyun Eom, Manos M. Tentzeris, and Sungjoon Lim, "Inkjet-printed electromagnet-based touchpad using spiral resonators," Journal of Microelectromechanical Systems, Vol. 25, No. 5, 947-953, Oct. 2016.

22. Memon, Muhammad Usman, Ahmed Salim, Heijun Jeong, and Sungjoon Lim, "Metamaterial inspired radio frequency-based touchpad sensor system," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 4, 1344-1352, Apr. 2020.

23. Nikitin, Pavel, "Leon Theremin (Lev Termen)," IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, 252-257, 2012.

24. Mathew, K., The evolution of the theremin, Capstone Projects and Master’s Theses, California State Univ California State University, Monterey Bay, CA, USA, May 2019.

25. Skeldon, Kenneth D., Lindsay M. Reid, Viviene McInally, Brendan Dougan, and Craig Fulton, "Physics of the Theremin," American Journal of Physics, Vol. 66, No. 11, 945-955, Nov. 1998.

26. Capolino, Filippo, Applications of Metamaterials, CRC Press, 2017.

27. Harnsoongnoen, Supakorn, "Microwave sensors based on coplanar waveguide loaded with split ring resonators: A review," KMUTNB International Journal of Applied Science and Technology, Vol. 12, No. 4, 224-234, 2018.