Vol. 7
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-04-14
UWB Imaging for Breastr Cancer Detection Using Neural Network
By
Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009
Abstract
This paper presents a simple feed-forward back-propagation Neural Network (NN) model to detect and locate early breast cancer/tumor efficiently through the investigation of Electromagnetic (EM) waves. A spherical tumor of radius 0.25 cm was created and placed at arbitrary locations in a breast model using an EM simulator. Directional antennas were used to transmit and receive Ultra-Wide Band (UWB) signals in 4 to 8 GHz frequency range. Small training and validation sets were constructed to train and test the NN. The received signals were fed into the trained NN model to find the presence and location of tumor. Very optimistic results (about 100% and 94.4% presence and location detection rate of tumor respectively) have been observed for early received signal components with the NN model. Hence, the proposed model is very potential for early tumor detection to save human lives in the future.
Citation
Saleh Ali AlShehri Sabira Khatun , "UWB Imaging for Breastr Cancer Detection Using Neural Network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202
http://www.jpier.org/PIERC/pier.php?paper=09031202
References

1. Shao, W. and B. Zhou, "UWB microwave imaging for breast tumor detection in inhomogeneous tissue," Proceedings of the 2005 IEEE Engineering in Medicine and Biology, 27th Annual Conference, 1496-1499, Shanghai, China, 2005.
doi:10.1109/IEMBS.2005.1616715

2. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330

3. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiograph, Vol. 18, 1137-1154, 1998.

4. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE MTT-S International Microwave Symposium Digest, Vol. 18, 387-390, 2003.

5. Paulsen, K. D. and P. M. Meaney, "Nonactive antenna compensation for fixed-array microwave imaging — Part I: Model development," IEEE Transactions on Medical Imaging, Vol. 18, 496-507, 1999.
doi:10.1109/42.781015

6. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging — Part II: Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, 508-518, 1999.
doi:10.1109/42.781016

7. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microwave Magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683

8. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beam forming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

9. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwav. Theory Tech., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

10. Shannon, C., E. Fear, and M. Okoniewski, "Dielectric-filled slotline bowtie antenna for breast cancer detection," Electronics Letters, Vol. 41, 388-390, 2005.
doi:10.1049/el:20057336

11. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, 2002.

12. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar for microwave imaging systems," IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27, Dubai, United Arab Emirates, 2007.

13. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.
doi:10.1109/22.883862

14. Miyakawa, M., T. Ishida, and M. Wantanabe, "Imaging capability of an early stage breast tumor by CP-MCT," Proceedings of the 26th Annual International Conference of the IEEE EMBS, Vol. 1, 1427-1430, San Francisco, CA, USA, 2004.

15. Wang, M., S. Yang, S. Wu, and F. Luo, "A RBFNN approach for DoA estimation of ultra wideband antenna array," Neurocomputing, Vol. 71, 631-640, 2008.
doi:10.1016/j.neucom.2007.08.023

16. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," Proceedings of IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

17. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand- sum image reconstruction algorithm," IEEE Transaction on Biomedical Engineering, Vol. 55, 1697-1704, 2008.
doi:10.1109/TBME.2008.919723

18. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

19. Fear, E. C., J. Still, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-897, 2003.
doi:10.1109/TMTT.2003.808630

20. Davis, S. K., H. Tandradinata, S. C. Hagness, and B. D. Veen, "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test ," IEEE Transactions on Biomedical Engineering, Vol. 52, 1237-1250, 2005.
doi:10.1109/TBME.2005.847528

21. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," IOP PUBLISHING, Phys. Med. Biol., Vol. 52, 6093-6115, 2007.

22. CST MICROWAVE STUDIO, CST inc., 2008.

23. Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press, 1997.

24. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetic Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

25. Shiva Nagendra, S. M. and Mukesh Khare, "Artificial neural network approach for modeling nitrogen dioxide dispersion from vehicular exhaust emissions," Elsevier, Ecological Modeling, Vol. 190, 99-115, 2006.
doi:10.1016/j.ecolmodel.2005.01.062

26. Messer, K. and J. Kittler, "Choosing an optimal neural network size to aid a search through a large image database," Proceedings of the Ninth British Machine Vision Conference, BMVC 98, 1998.

27. Wang, L. and H. Quek, "Optimal size of a feedforward neural network: How much does it matter?," IEEE, Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services (ICAS/ICNS 2005), 2005.