In this paper, a novel printed monopole antenna for ultra wideband applications with variable frequency band-notch characteristic is presented. The proposed antenna consists of a stepped square radiating patch with modified W-shaped slot and a ground plane with rectangular sleeve and pair of L-shaped resonator which provides a wide usable fractional bandwidth of more than 130% (3.05-14.7 GHz). By cutting a modified W-shaped slot with variable dimensions on the radiating patch frequency band-stop performance is generated and we can control its characteristics such as band-notch frequency and its bandwidth. The designed antenna has a small size of 12×18 mm2 while showing the band rejection performance in the frequency band of 5.08 to 5.91 GHz.
2. Ammann, M. J., "Impedance bandwidth of the square planar monopole," Microwave and Optical Tech. Letters, Vol. 24, No. 3, 183-187, Feb. 2000.
3. Evans, J. A. and M. J. Ammann, "Planar trapezoidal and pentagonal monopoles with impedance bandwidths in excess of 10 : 1," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1558-1561, Jul. 1999.
4. Chen, Z. N., "Impedance characteristics of planar bow-tie-like monopole antennas," Electronics Letters, Vol. 36, No. 13, 1100-1101, Jun. 2000.
doi:10.1049/el:20000816
5. Suh, S. Y., W. L. Stutzman, and W. A. Davis, "A new ultrawideband printed monopole antenna: The planar inverted cone antenna (PICA)," IEEE Trans. Antennas Propagat., Vol. 52, No. 5, 1361-1364, May 2004.
doi:10.1109/TAP.2004.827529
6. Ojaroudi, M., C. Ghobadi, and J. Nourinia, "Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 1, 728-731, 2009.
doi:10.1109/LAWP.2009.2025972
7. Eldek, A. A., "Numerical analysis of a small ultra wideband microstrip-FED tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305
8. Ojaroudi, M., G. Ghanbari, N. Ojaroudi, and C. Ghobadi, "Small square monopole antenna for UWB applications with variable frequency band-notch function," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1061-1064, 2009.
doi:10.1109/LAWP.2009.2030697
9. Zhang, X., T.-L. Zhang, Y.-Y. Xia, Z.-H. Yan, and X.-M. Wang, "Planar monopole antenna with band-notch characterization for UWB applications," Progress In Electromagnetics Research Letters, Vol. 6, 149-156, 2009.
doi:10.2528/PIERL09011305
10. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, J.-H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.
doi:10.2528/PIER08072801
11. Chen, H. D., H. M. Chen, and W. S. Chen, "Planar CPW-fed sleeve monopole antenna for ultra-wideband operation," IET Microw. Antennas Propag., Vol. 152, No. 6, 491-494, Dec. 2005.
doi:10.1049/ip-map:20050034
12. Amini, F., M. N. Azarmanesh, and M. Ojaroudi, "Small semi-circle-like slot antenna for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 13, 149-158, 2010.
doi:10.2528/PIERC10022804
13. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10, 703-705, Oct. 2005.
doi:10.1109/LMWC.2005.856834
14. Ansoft High Frequency Structure Simulation (HFSS), Ver. 10, Ansoft Corporation, 2005.