Vol. 24
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-10-11
A Novel Conformal End-Fire Antenna Design Using the Competitive Algorithm of Simulating Natural Tree Growth
By
Progress In Electromagnetics Research C, Vol. 24, 207-219, 2011
Abstract
This paper presents a novel conformal end-fire antenna whose design employs the Competitive Algorithm of Simulating Natural Tree Growth. This algorithm is based on the idea of simulating the processes of growth and wilting of natural trees and can search from simple to complicated structures with rapid convergence. Four optimized radiation elements were designed on a cross structure to verify the performance of the algorithm. A prototype of the designed antenna was also fabricated and tested. The antenna resonates at the center frequency of 2.45 GHz, exhibiting an ideal end-fire property. In addition, the measured and simulated results are in good agreement. Finally, we propose a novel end-fire antenna array based on the cross structure, with a radiation gain reaching 17.6 dBi.
Citation
Lu Dong, and Ka-Ma Huang, "A Novel Conformal End-Fire Antenna Design Using the Competitive Algorithm of Simulating Natural Tree Growth," Progress In Electromagnetics Research C, Vol. 24, 207-219, 2011.
doi:10.2528/PIERC11082904
References

1. Knott, P., "Design and experimental results of a spherical antenna array for a conformal array demonstrator," INICA'07, 2nd International ITG Conference on Antennas, Mar. 28-30, 2007.

2. Sangster, A. J. and R. T. Jacobs, "Mutual coupling in conformal microstrip patch antenna arrays," IEE Proceedings - Microwaves Antennas and Propagation, Vol. 150, No. 4, Aug. 2003.
doi:10.1049/ip-map:20030544

3. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

4. Macon, C. A., K. D. Trott, and L. C. Kempel, "A practical approach to modeling doubly curved conformal microstrip antennas," Progress In Electromagnetics Research, Vol. 40, 295-314, 2003.
doi:10.2528/PIER02122903

5. Bilotti, F., A. Alù, and L. Vegni, "Electromagnetic field solution conformal structures: Theoretical and numerical analysis," Progress In Electromagnetics Research, Vol. 47, 1-25, 2004.
doi:10.2528/PIER03080102

6. Morton, T. E. and K. M. Pasala, "Pattern synthesis of conformal arrays for airborne vehicles," IEEE Aerospace Conference Proceedings, Vol. 2, 1030-1039, 2004.

7. Liu, F., Z. Zhang, W. Chen, Z. Feng, and M. FIskander, "An endfire beam-switchable antenna array used in vehicular environment," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 2010.

8. Yao, G., Z. Xue, W. Li, et al. "The research of plate end-fire antenna," Chinese Journal of Radio Science, Vol. 24, No. 2, 323-326, 2009 (in Chinese).

9. Walker, S. P., "Development in time-domain integral-equation modeling at imperial college," IEEE Antennas and Propagation Magazine, Vol. 39, No. 1, 7-19, 1997.
doi:10.1109/74.583515

10. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

11. Lu, Z.-B., A. Zhang, and X.-Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004

12. Wang, Y., Y.-J. Xie, and H. Feng, "Analysis of cylindrically conformal microstrip structures using an iterative method," Progress In Electromagnetics Research, Vol. 87, 215-231, 2008.
doi:10.2528/PIER08102402

13. Grajek, P. R., B. Schoenlinner, and G. M. Rebeiz, "A 24-GHz high-gain Yagi-Uda antenna array," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, May 2004.
doi:10.1109/TAP.2004.827543

14. DeJean, G. R. and M. M. Tentzeris, "A new high-gain microstrip Yagi array antenna with a high front-to-back (F/B) ratio for WLAN and millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 298-304, Feb. 2007.
doi:10.1109/TAP.2006.889818

15. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801

16. Godi, G., R. Sauleau, L. Le Coq, and D. Thouroude, "Design and optimization of three-dimensional integrated lens antennas with genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 770-775, Mar. 2007.
doi:10.1109/TAP.2007.891558

17. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

18. Zhong, M., S. Yang, and Z. Nie, "Optimization of a luneberg lens antenna using the differential evolution algorithm," IEEE Antennas and Propagation Society International Symposium, APS 2008, 1-4, Jul. 2008.

19. Guo, G. and K. Huang, "Competition algorithm of simulating natural tree growth and its application in curve fiting," Journal of Computational and Theoretical Nanoscience, Vol. 4, 1-4, 2007.

20. Guo, G.-W. and K.-M. Huang, "A forest competition algorithm and its application in solving transcendental equations," Journal of Sichuan University (Engineering Science Edition), Vol. 40, No. 6, 127-132, 2008.

21. Lu, B., J. Zhang, and K. Huang, "Competitive algorithm of simulating natural tree growth and its application in antenna design," Progress In Electromagnetics Research Letters, Vol. 12, 41-48, 2009.
doi:10.2528/PIERL09082402

22. Chen, J., X. Chen, and K. Huang, "A wideband microstrip tree antenna designed by the tree growth competition algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 941-952, 2009.
doi:10.1163/156939309788355225

23. Zhang, J. and K. Huang, "A novel tree-shaped antenna with wideband and end-fire properties designed by competitive algorithm of simulating natural tree growth," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 20, No. 3, May 2010.