Vol. 48
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-03-20
An Efficient Fixed Rate Transmission Scheme Over Delay-Constrained Wireless Fading Channels
By
Progress In Electromagnetics Research C, Vol. 48, 133-139, 2014
Abstract
In this paper, we study the scheduler design problems over delay-constrained wireless communication links. Following a crosslayer design approach, the wireless system is modeled as a joint link-PHY layer architecture with a finite-length buffer and continuousstate fading links. A heuristic and efficient fixed rate transmission scheduler scheme (FRT) is proposed. We formulate and analyze the performance of the FRT scheme in terms of power efficiency and packet drop rate. Compared with variable rate schemes, the FRT scheme can considerably simplify the hardware implementation of transmitter. In addition, we show that the optimization of FRT scheme can be conducted with significantly reduced computational cost by utilizing the sparse feature of the transition probability matrix. Moreover, the simulation results show that at the packet drop rate of 10-3, the optimized average transmit power of FRT scheme is only 0.5 dB higher than the known optimal variable rate scheme, indicating that the FRT scheme is quite power efficient as well. Therefore, we conclude that the FRT scheme is more feasible than variable rate schemes in practical delayconstrained wireless systems with regard to both hardware cost and power efficiency.
Citation
Xiangyu Gao Yuesheng Zhu , "An Efficient Fixed Rate Transmission Scheme Over Delay-Constrained Wireless Fading Channels," Progress In Electromagnetics Research C, Vol. 48, 133-139, 2014.
doi:10.2528/PIERC13111104
http://www.jpier.org/PIERC/pier.php?paper=13111104
References

1. Berry, R. A. and R. G. Gallager, "Communication over fading channels," IEEE Trans. Inf. Theory, Vol. 48, No. 5, 1135-1149, 2002.
doi:10.1109/18.995554

2. Rajan, D., A. Sabharwal, and B. Aazhang, "Delay-bound packet scheduling of bursty traffic over wireless channels," IEEE Trans. Inf. Theory, Vol. 50, No. 1, 125-144, 2004.
doi:10.1109/TIT.2003.821989

3. Wu, D. and R. Negi, "Effective capacity: A wireless link model for support of quality of service," IEEE Trans. Wireless Commun., Vol. 2, No. 4, 630-643, 2003.

4. Tang, J. and X. Zhang, "Quality-of-service driven power and rate adaption over wireless links," IEEE Trans. Wireless Commun., Vol. 6, No. 8, 3058-3068, 2007.
doi:10.1109/TWC.2007.051075

5. Hoang, A. T. and M. Motani, "Cross-layer adaptive transmission: Optimal strategies in fading channels," IEEE Commun. Letters, Vol. 56, No. 5, 799-807, 2008.
doi:10.1109/TCOMM.2008.060214

6. Zafer, M. and E. Modiano, "Optimal rate control for delay-constrained data transmission a wireless channel," IEEE Trans. Inf. Theory, Vol. 54, No. 9, 4020-4039, 2008.
doi:10.1109/TIT.2008.928249

7. Li, X., X. Dong, and D. Wu, "On optimal power control for delay-constrained communication over fading channels," IEEE Trans. Inf. Theory, Vol. 57, No. 6, 3371-3389, 2011.
doi:10.1109/TIT.2011.2132510

8. Chung, J. Y., T. Yang, and J. Lee, "Low correlation MIMO antennas with negative group delay," Progress In Electromagnetics Research C, Vol. 22, 151-163, 2011.
doi:10.2528/PIERC11051007

9. Mahmood, K., A. Rizk, and Y. Jiang, "On the flow-lever delay of a spatial multiplexing MIMO wireless channel," IEEE International Conference on Commun., 1-6, Kyoto, Japan, 2011.

10. Deng, Y., C. Lin, F. Ren, and D. Wu, "Optimal power scheduling in 802.11n wireless networks for real-time services," Wireless Commun. and Mobile Computing, Published Online in Wiley Online Library, 2012.

11. Brzaraa, M., H. Sherali, and C. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley-Interscience, New York, 2006.
doi:10.1002/0471787779