Vol. 58
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-07-31
Monitoring of Electromagnetic Environment Along High-Speed Railway Lines Based on Compressive Sensing
By
Progress In Electromagnetics Research C, Vol. 58, 183-191, 2015
Abstract
This paper deals with an efficient methodology aimed at monitoring the radiated electromagnetic emissions along a high-speed railway system in the hundreds of kilohertz range. In particular, the proposed approach allows a compressed representation of the spatial distribution of the frequency spectrum of the radiated magnetic field generated by the currents placed on the railway conductors by electrical apparatus on board of running railway vehicles. The main idea underlying this work is that the standing wave nature of current distribution along the railway line results in a spatial distribution of radiated magnetic field which can be effectively represented by resorting to the emerging compressive sensing theory. To this aim, wireless magnetic-field sensors are assumed to be deployed along the railway line and used to provide spatial samples of the magnetic field spectrum. The main advantages of the proposed approach include a smaller number of sensors when compared with the number foreseen by the straightforward use of the conventional Nyquist-Shannon sampling approach, and a simple treatment of nonuniform spatial distribution of sensors. Suitability of the proposed approach is supported by measurement data and electromagnetic models already available in the related literature, whereas effectiveness of field spatial reconstruction is proved through numerical simulations. Although the application presented in this work is specific to the magnetic field distribution in a limited frequency range, the proposed approach has a general validity and could be effectively exploited for distributed monitoring of other physical quantities, in other frequency ranges, related to electromagnetic compatibility and safety/security issues in high-speed railway systems.
Citation
Diego Bellan, and Sergio A. Pignari, "Monitoring of Electromagnetic Environment Along High-Speed Railway Lines Based on Compressive Sensing," Progress In Electromagnetics Research C, Vol. 58, 183-191, 2015.
doi:10.2528/PIERC15051103
References

1. Bellan, D., G. Spadacini, E. Fedeli, and S. A. Pignari, "Space-frequency analysis and experimental measurement of magnetic field emissions radiated by high-speed railway systems," IEEE Trans. Electromagn. Compat., Vol. 55, No. 6, 1031-1042, 2013.
doi:10.1109/TEMC.2013.2258150

2. Bellan, D., A. Gaggelli, F. Maradei, A. Mariscotti, and S. A. Pignari, "Time-domain measurement and spectral analysis of nonstationary low-frequency magnetic-field emissions on board of rolling stock," IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 12-23, 2004.
doi:10.1109/TEMC.2004.823607

3. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

4. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inf. Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

5. Candes, E. J. and M. B.Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

6. Tropp, J. A., J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, "Beyond Nyquist: Efficient sampling of sparse bandlimited signals," IEEE Trans. Inf. Theory, Vol. 56, No. 1, 520-544, 2010.
doi:10.1109/TIT.2009.2034811

7. Dong, M., L. Tong, and B. M. Sadler, "Impact of data retrieval pattern on homogeneous signal field reconstruction in dense sensor networks," IEEE Trans. Signal Process, Vol. 54, No. 1, 4352-4364, 2006.
doi:10.1109/TSP.2006.881233

8. Yang, A. Y., M. Gastpar, R. Bajcsy, and S. Shankar Sastry, "Distributed sensor perception via sparse representation," Proc. of the IEEE, Vol. 98, No. 6, 1077-1088, 2010.
doi:10.1109/JPROC.2010.2040797

9. Bellan, D., "Reconstruction of noisy electromagnetic fields by means of compressive sensing theory," Applied Mechanics and Materials, Vol. 263–266, 99-102, 2013.

10. Wang, P. Y., Q. Song, and Z. M. Zhou, "A physics-based landmine discrimination approach with compressive sensing," Progress In Electromagnetics Research, Vol. 135, 37-53, 2013.
doi:10.2528/PIER12082704

11. Xia, S., Y. Liu, J. Sichina, and F. Liu, "A compressive sensing signal detection for UWB radar," Progress In Electromagnetics Research, Vol. 141, 479-495, 2013.
doi:10.2528/PIER13061714

12. Yaroslavsky, L., "Is ‘compressed sensing’ compressive? Can it beat the Nyquist sampling approach?," Physics. Optics cs. IT Math. IT, arXiv: 1501.01811v2, Jan. 9, 2015.

13. Bellan, D., G. Spadacini, F. Grassi, E. Fedeli, and S. A. Pignari, "Modeling strategies for conducted and radiated emissions in high-speed railway lines," Proceedings of Asia-Pacific Int. Symp. on Electromagn. Compat. (APEMC 2013), 288-291, Melbourne, Australia, May 20-23, 2013.

14. Bellan, D., A. Brandolini, and A. Gandelli, "Quantization theory in electrical and electronic measurements," Proc. 1995 IEEE Instrumentation and Measurement Technology Conference, 494-499, Waltham, MA, USA, Apr. 23-26, 1995.

15. Bellan, D., A. Brandolini, L. Di Rienzo, and A. Gandelli, "Improved definition of the effective number of bits in ADC testing," Computer Standards and Interfaces, Vol. 19, No. 3–4, 231-236, 1998.
doi:10.1016/S0920-5489(98)00011-7

16. Bellan, D., A. Brandolini, and A. Gandelli, "ADC nonlinearities and harmonic distortion in FFT test," Proc. 1998 IEEE Instrumentation and Measurement Technology Conference, 1233-1238, St. Paul, MN, USA, May 18-21, 1998.

17. Bellan, D., "Model for the spectral effects of ADC nonlinearity," Measurement: Journal of the International Measurement Confederation, Vol. 26, No. 2, 65-76, 2000.

18. Bellan, D., "On the validity of the noise model of quantization for the frequency-domain amplitude estimation of low-level sine waves," Metrology and Measurement Systems, Vol. 22, No. 1, 89-100, 2015.
doi:10.1515/mms-2015-0004