Vol. 63
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-03-23
Practical Design of Filters Using EBG Waveguides Periodically Loaded with Metal Ridges
By
Progress In Electromagnetics Research C, Vol. 63, 13-21, 2016
Abstract
The dispersion diagram of infinite periodic structures is useful for the practical design of waveguide filters. Analyzing the pass- and stop-bands (gaps) in the dispersion diagram of a unit cell, it is possible to generate a finite structure with a very similar electrical response. However, the truncation of the infinite periodic structure degrades the pass-band performance. In this paper, these impairments are overcome by means of suitable waveguide tapers matching the impedance of the periodic structure to the access ports. As a result, the analysis and design of practical low-pass filters, derived from passive structures based on Electromagnetic Band-Gap (EBG) waveguides periodically loaded with metal ridges, are successfully addressed. According to these procedures, a five-order and an eight-order EBG low-pass filters are obtained after an optimization step. Measurements of a manufactured prototype fully validate the proposed approach.
Citation
Stephan Marini, Pablo Soto, Ángela Coves, Benito Gimeno Martinez, and Vicente Boria, "Practical Design of Filters Using EBG Waveguides Periodically Loaded with Metal Ridges," Progress In Electromagnetics Research C, Vol. 63, 13-21, 2016.
doi:10.2528/PIERC15111603
References

1. Wang, C.-C., H.-C. Chiu, and T.-G. Ma, "A slow-wave multilayer synthesized coplanar waveguide and its applications to rat-race coupler and dual-mode filter," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 7, 1719-1729, 2011.
doi:10.1109/TMTT.2011.2138713

2. Chang, W. S. and C.-Y. Chang, "Novel microstrip periodic structure and its application to microwave filter design," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 3, 124-126, 2011.
doi:10.1109/LMWC.2011.2105250

3. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Switchable and tunable notch in ultra-wideband filter using electromagnetic bandgap structure," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 12, 839-841, 2014.
doi:10.1109/LMWC.2014.2363020

4. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

5. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

6. Goussetis, G., G. Feresidis, and P. Kosmas, "Efficient analysis, design, and filter applications of EBG waveguide with periodic resonantloads," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 11, 3885-3892, 2006.
doi:10.1109/TMTT.2006.883648

7. Tang, Y. M., Y. M. Yu, and W. Wu, "Improved EBG-loaded waveguide low-pass filter," Microwave and Optical Techn. Lett., Vol. 50, No. 8, 2090-2093, 2008.
doi:10.1002/mop.23608

8. Marini, S., A. Coves, M. Taroncher, V. E. Boria, and B. Gimeno, "Full-wave analysis and applications of EBG waveguides periodically loaded with metal ridges," Proceeding of IEEE MTT-S Int. Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 87-90, Guadalajara, Mexico, 2009.

9. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Norwood, 1980.

10. Craven, G., Evanescent Mode Microwave Components, Artech House, Norwood, 1987.

11. Bornemann, J. and F. Arndt, "Transverse resonance, standing wave, and resonator formulations of the ridge waveguide eigenvalue problem and its application to the design of E-plane finned waveguide filters," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1104-1113, 1990.
doi:10.1109/22.57337

12. Nanan, J.-C., J.-W. Tao, H. Baudrand, B. Theron, and S. Vigneron, "A two-step synthesis of broadband ridged waveguide bandpass filters with improved performances," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 12, 2192-2197, 1991.
doi:10.1109/22.106564

13. Fahmi, M. M., J. A. Ruiz-Cruz, R. R. Mansour, and K. A. Zaki, "Compact ridge waveguide filters with arbitrarily placed transmission zeros using nonresonating nodes," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3354-3361, 2009.
doi:10.1109/TMTT.2009.2034423

14. Goussetis, G. and D. Budimir, "E-plane manifold multiplexers with improved bandwidth," Proc. 31st Eur. Microwave Conf., 1-4, London, 2001.

15. Goussetis, G. and D. Budimir, "Novel periodically loaded E-plane filters," IEEE Microwave and Wireless Comp. Lett., Vol. 13, No. 6, 193-195, 2003.
doi:10.1109/LMWC.2003.811046

16. Yazdani, M., L. Murphy, A. Mallahzadeh, E. Arvas, and J. Mautz, "The design of double ridge waveguide filter using conventional stepped impedance low-pass filter method," Microwave and Optical Techn. Lett., Vol. 56, No. 1, 120-124, 2014.
doi:10.1002/mop.28022

17. Cameron, R., C. Kudsia, and R. R. Mansour, Microwave Filters: Fundamentals, Design and Applications, John Wiley & Sons, Hoboken, 2007.

18. Monerris, O., P. Soto, S. Cogollos, V. E. Boria, J. Gil, C. Vicente, and B. Gimeno, "Accurate circuit synthesis of low-pass corrugated waveguide filters," Proc. 40th Eur. Microwave Conf., 1237-1240, Paris, 2001.

19. Gerini, G., M. Guglielmi, and G. Lastoria, "Efficient integral equation formulations for admittance or impedance representation of planar waveguide junctions," Proceeding of IEEE MTT-S Int. Microwave Symp. Digest, 1998, Vol. 3, 1747-1750, Baltimore, MD, 1998.

20. Cogollos, S., S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, et al. "Efficient modal analysis of arbitrarily shapedwaveguides composed of linear, circular and elliptical arcs using the BI-RME method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2378-2390, 2003.
doi:10.1109/TMTT.2003.819776

21. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

22. Marini, S., A. Coves, B. Gimeno, and V. E. Boria, "Efficient modal analysis of periodic structures loaded with arbitrarily shaped waveguides," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 3, 529-536, 2010.
doi:10.1109/TMTT.2010.2040407

23. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.

24. Hoefer, W. J. R. and M. N. Burton, "Closed-form expressions for the parameters of finned and ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 30, No. 12, 2190-2194, 1982.
doi:10.1109/TMTT.1982.1131406

25. Sharma, A. K. and W. J. R. Hoefer, "Empirical expressions for fin-line design," IEEE Trans. Microwave Theory Tech., Vol. 31, No. 4, 350-356, 1983.
doi:10.1109/TMTT.1983.1131496

26. FEST3D 6.7. Aurora Software and Testing S.L. (on behalf of ESA/ESTEC), , , Valencia, Spain, [Online].

27. Ansys HFSS, (High Frequency Structure Simulator), , Ansys Inc., Canonsburg, PA, USA.

28. Marini, S., M. Mattes, B. Gimeno, and V. E. Boria, "Improved computation of propagation losses in waveguide structures using perturbation of boundary conditions," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 11, 577-579, 2011.
doi:10.1109/LMWC.2011.2167135

29. Marini, S., P. Soto, M. Mattes, B. Gimeno, S. Bleda, A. Vidal, and V. E. Boria, "Rigorous evaluation of propagation losses in arbitrarily shaped waveguide structures using boundary integral-resonant mode expansion and perturbation of boundary conditions," IET Microwave, Antennas and Propagation, Vol. 8, No. 12, 980-989, 2014.
doi:10.1049/iet-map.2013.0414