Vol. 72
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-03-10
High-Quality Compact Interdigital Microstrip Resonator and Its Application to Bandpass Filter
By
Progress In Electromagnetics Research C, Vol. 72, 91-103, 2017
Abstract
A compact microstrip resonator based on the interdigital structure is proposed. The resonator has several times higher unloaded quality factor compared to similar resonators presented previously and can even reach the Q-factor of a regular λ/4 resonator. The size of the resonator can be significantly reduced with a substantial increase in quality factor by incrementing the number of pins in the interdigital structure. In addition, for each gap between the pins exist an optimal number of pins that correspond to the maximum Q-factor. An extension of the upper stopband for a bandpass filter designed using the resonator can be achieved by the interconnection of the pins in each of the comb structures. The simulation results were proven by fabricated resonators and 4-pole bandpass filter. For the central frequency of 2000 MHz and 16.2% fractional bandwidth, the lateral size of the filter is only 11.5 mm×3.8 mm for alumina substrate (eps=9.8). The filter has an upper stopband up to 5.8f0 at the level -40 dB.
Citation
Boris Belyaev Alexey Mikhailovich Serzhantov Aleksandr Leksikov Yaroslav F. Bal'va Andrey Leksikov , "High-Quality Compact Interdigital Microstrip Resonator and Its Application to Bandpass Filter," Progress In Electromagnetics Research C, Vol. 72, 91-103, 2017.
doi:10.2528/PIERC16101303
http://www.jpier.org/PIERC/pier.php?paper=16101303
References

1. Jin, X., W. Wen, and M. Chen, "Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3187-3199, Sep. 2013.
doi:10.1109/TMTT.2013.2273759

2. Shum, K. M., T. T. Mo, Q. Xue, and C. H. Chan, "A compact bandpass filter with two tuning transmission zeros using a CMRC resonator," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 3, 895-900, Mar. 2005.
doi:10.1109/TMTT.2004.842492

3. Wu, C.-H., C.-H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1756-1763, Mar. 2007.
doi:10.1109/TMTT.2007.901609

4. Mao, R.-J., X.-H. Tang, L. Wang, and G.-H. Du, "Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 440-448, Feb. 2008.
doi:10.1109/TMTT.2007.914622

5. Liang, C.-H. and C.-Y. Chang, "Novel microstrip stepped-impedance resonator for compact wideband bandpass filters," Asia Pacific Microwave Conference, APMC 2009, 941-944, 2009.
doi:10.1109/APMC.2009.5384325

6. Fernandez-Prieto, A., A. Lujambio, J. Martel, F. Medina, F. Mesa, and R. R. Boix, "Simple and compact balanced bandpass filters based on magnetically coupled resonators," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 1843-1853, Jun. 2015.
doi:10.1109/TMTT.2015.2424229

7. Luo, X., H. Qian, J.-G. Ma, K. Ma, and K. S. Yeo, "Compact dual-band bandpass filters using novel embedded spiral resonator (ESR)," IEEE Microw. Compon. Lett., Vol. 20, No. 8, 435-437, Aug. 2010.
doi:10.1109/LMWC.2010.2050195

8. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 755-762, Feb. 2006.
doi:10.1109/TMTT.2005.862626

9. Yang, T., M. Tamura, and T. Itoh, "Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 390-402, Feb. 2010.
doi:10.1109/TMTT.2009.2038662

10. Liang, C.-H. and C.-Y. Chang, "Compact wideband bandpass filters using stepped-impedance resonators and interdigital coupling structures," IEEE Microw. Compon. Lett., Vol. 19, No. 9, 551-553, Sep. 2009.
doi:10.1109/LMWC.2009.2027060

11. Boonlom, K., T. Pratumvinit, and P. Akkaraekthalin, "A compact microstrip two-layers bandpass filter using improved interdigital-loop resonators," IEEE International Symposium on Radio- Frequency Integration Technology, RFIT 2009, 367-370, 2009.
doi:10.1109/RFIT.2009.5383685

12. Zhu, J. and Z. Feng, "Microstrip interdigital hairpin resonator with an optimal physical length," IEEE Microw. Compon. Lett., Vol. 16, No. 12, 672-674, Dec. 2006.
doi:10.1109/LMWC.2006.885622

13. Hong, J. S. and M. J. Lancaster, "Capacitively loaded microstrip loop resonator," Electron. Lett., Vol. 30, No. 18, 1494-1495, Sep. 1994.
doi:10.1049/el:19941025

14. Aboush, Z. and A. Porch, "Compact, narrow bandwidth, lumped element bandstop resonators," IEEE Microw. Compon. Lett., Vol. 15, No. 8, 524-526, Aug. 2005.
doi:10.1109/LMWC.2005.852793

15. Liang, C.-H., C.-H. Chen, and C.-Y. Chang, "Fabrication-tolerant microstrip quarter-wave steppedimpedance resonator filter," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1163-1172, May 2009.
doi:10.1109/TMTT.2009.2017345

16. Jin, X., W. Wen, and M. Chen, "Compact and sharp skirts microstrip dual-mode dual-band bandpass filter using a single quadruple-mode resonator (QMR)," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1104-1112, Mar. 2013.
doi:10.1109/TMTT.2013.2238949

17. Bekheit, M., S. Amari, and W. Menzel, "Modeling and optimization of compact microwave bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 420-430, Feb. 2008.
doi:10.1109/TMTT.2007.914638

18. Athukorala, L. and D. Budimir, "Compact dual-mode open loop microstrip resonators and filters," IEEE Microw. Compon. Lett., Vol. 19, No. 11, 698-700, Nov. 2009.
doi:10.1109/LMWC.2009.2032003

19. Tang, C.-W. and S.-F. You, "Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 717-723, Feb. 2006.
doi:10.1109/TMTT.2005.862638

20. Ye, T., B. Yan, and S. Zhou, "A compact folded interdigital bandpass filter using LTCC technology," 2010 International Conference on Microwave and Millimeter Wave Technology, ICMMT, 717-719, 2010.

21. Chen, H.-C., C.-H. Tsai, and T.-L. Wu, "A compact and embedded balanced bandpass filter with wideband common-mode suppression on wireless SIP," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, No. 6, 1030-1038, Jun. 2012.
doi:10.1109/TCPMT.2012.2186451

22. Tamura, M., T. Yang, and T. Itoh, "Very compact and low-profile LTCC unbalanced-to-balanced filters with hybrid resonators," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 8, 1925-1936, Aug. 2011.
doi:10.1109/TMTT.2011.2141678

23. Perigaud, A., S. Bila, S. Verdeyme, D. Baillargeat, and D. Kaminsky, "Multilayer interdigital structures for compact bandpass filters providing high selectivity and wideband rejections," IEEE Microw. Compon. Lett., Vol. 24, No. 2, 93-95, Feb. 2014.
doi:10.1109/LMWC.2013.2290221

24. Belyaev, B. A., A. M. Serzhantov, V. V. Tyurnev, Y. F. Bal’va, and A. A. Leksikov, "Planar bandpass filter with 100-dB suppression up to tenfold passband frequency," Progress In Electromagnetics Research C, Vol. 48, 37-44, 2014.
doi:10.2528/PIERC14013003

25. Belyaev, B. A., A. M. Serzhantov, Ya. F. Bal’va, A. A. Leksikov, and R. G. Galeev, "A new design of a miniature microstrip resonator with interdigital structure," Tech. Phys. Lett., Vol. 40, No. 11, 1010-1013, Nov. 2014.
doi:10.1134/S1063785014110194

26. Belyaev, B. A., A. M. Serzhantov, A. A. Leksikov, Ya. F. Bal’va, and A. A. Leksikov, "Novel high-quality compact microstrip resonator and its application to bandpass filter," IEEE Microw. Compon. Lett., Vol. 25, No. 9, 579-581, Nov. 2015.
doi:10.1109/LMWC.2015.2451363

27. Leferink, F. B. J., "Inductance calculations; methods and equations," IEEE International Symposium on Electromagnetic Compatibility, 16-22, 1995.
doi:10.1109/ISEMC.1995.523511