Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-02-21

Scalable Preparation of Broadband Ultrablack Graphite Nanoneedle Surfaces through Self-Masked Etching

By Tingbiao Guo, Yaoran Sun, Sailing He, Jiang Yang, Mengzhu Hu, Wen Mu, and Julian Evans
Progress In Electromagnetics Research C, Vol. 81, 191-197, 2018
doi:10.2528/PIERC17113006

Abstract

Ultrablack materials play an essential role in astronomical observation and many thermal applications. Many material systems such as vertically aligned carbon nanotubes have produced extraordinarily high absorption, but require complicated fabrication. Here we report a single step self-masked etching process performed on compressed-coal graphite plates on a silicon substrate, which produces an ultrablack material with 0.7% hemispherical reflectance in the visible region and specular reflectance below 0.7% between 850 nm and 10 μm. Nanoscopic pieces of silicon are ripped off the substrate and deposit on the graphite resulting in carbon nanoneedle structures, which grow linearly with etching time reaching a height of 5.7 μm after 60 minutes.

Citation


Tingbiao Guo, Yaoran Sun, Sailing He, Jiang Yang, Mengzhu Hu, Wen Mu, and Julian Evans, "Scalable Preparation of Broadband Ultrablack Graphite Nanoneedle Surfaces through Self-Masked Etching," Progress In Electromagnetics Research C, Vol. 81, 191-197, 2018.
doi:10.2528/PIERC17113006
http://www.jpier.org/PIERC/pier.php?paper=17113006

References


    1. Kuhn, T. S., Black-body Theory and the Quantum Discontinuity, 1894-1912, University of Chicago Press, Chicago, 1987.

    2. Hagopian, J. G., S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, and C. Hunt, "Multiwalled carbon nanotubes for stray light suppression in space flight instruments," Proc. SPIE, 2010.

    3. Theocharous, E., C. J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, and J. R. Reveles, "The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications," Opt. Express, Vol. 22, No. 6, 7290-7307, 2014.
    doi:10.1364/OE.22.007290

    4. Kodama, S., M. Horiuchi, K. Kuroda, and T. Kunii, "Ultra-black nickel-phosphorus alloy optical absorber," 6th IEEE Instrumentation and Measurement Technology Conference, 1989, IMTC-89, 1989.

    5. Brown, R. J., P. J. Brewer, and M. J. Milton, "The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces," J. Mater. Chem., Vol. 12, No. 9, 2749-2754, 2002.
    doi:10.1039/B204483H

    6. Yang, Z.-P., L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, "Experimental observation of an extremely dark material made by a low-density nanotube array," Nano Lett., Vol. 8, No. 2, 446-451, 2008.
    doi:10.1021/nl072369t

    7. Mizuno, K., J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, "A black body absorber from vertically aligned single-walled carbon nanotubes," Proc. Natl. Acad. Sci., Vol. 106, No. 15, 6044-6047, 2009.
    doi:10.1073/pnas.0900155106

    8. Zhou, L., Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, "Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation," Science Adv., Vol. 2, No. 4, e1501227, 2016.
    doi:10.1126/sciadv.1501227

    9. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nat. Nanotechnol., Vol. 9, No. 2, 126-130, 2014.
    doi:10.1038/nnano.2013.286

    10. Lehman, J., A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, "Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium antalate," Nano Lett., Vol. 10, No. 9, 3261-3266, 2010.
    doi:10.1021/nl100582j

    11. Theocharous, E., R. Deshpande, A. Dillon, and J. Lehman, "Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared," Appl. Opt., Vol. 45, No. 6, 1093-1097, 2006.
    doi:10.1364/AO.45.001093

    12. Mellouki, I., N. Bennaji, and N. Yacoubi, "IR characterization of graphite black-coating for cryogenic detectors," Infrared Phys. Technol., Vol. 50, No. 1, 58-62, 2007.
    doi:10.1016/j.infrared.2006.05.002

    13. Granqvist, C., "Radiative heating and cooling with spectrally selective surfaces," Appl. Opt., Vol. 20, No. 15, 2606-2615, 1981.
    doi:10.1364/AO.20.002606

    14. Her, T.-H., R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett., Vol. 73, No. 12, 1673-1675, 1998.
    doi:10.1063/1.122241

    15. Peng, K.-Q., Y.-J. Yan, S.-P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater., Vol. 14, No. 16, 1164, 2002.
    doi:10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E

    16. Jansen, H., M. de Boer, R. Legtenberg, and M. Elwenspoek, "The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control," JMiMi, Vol. 5, No. 2, 115, 1995.

    17. Sun, Y., J. Evans, F. Ding, S. Wang, L. Mo, and S. He, "Patterning of graphite nanocones for broadband solar spectrum absorption," AIP Adv., Vol. 5, No. 6, 067139, 2015.
    doi:10.1063/1.4922894

    18. Sun, Y., J. Evans, F. Ding, N. Liu, W. Liu, Y. Zhang, and S. He, "Bendable, ultra-black absorber based on a graphite nanocone nanowire composite structure," Opt. Express, Vol. 23, No. 15, 20115-20123, 2015.
    doi:10.1364/OE.23.020115

    19. Letellier, M., J. Macutkevic, P. Kuzhir, J. Banys, V. Fierro, and A. Celzard, "Electromagnetic properties of model vitreous carbon foams," Carbon, Vol. 122, 217-227, 2017.
    doi:10.1016/j.carbon.2017.06.080

    20. Kuzhir, P. P., A. G. Paddubskaya, N. I. Volynets, K. G. Batrakov, T. Kaplas, P. Lamberti, R. Kotsilkova, and P. Lambin, "Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range," J. Nanophotonics, Vol. 11, No. 3, 032504-032504, 2017.
    doi:10.1117/1.JNP.11.032504

    21. Shah, A., P. Stenberg, L. Karvonen, R. Ali, S. Honkanen, H. Lipsanen, N. Peyghambarian, M. Kuittinen, Y. Svirko, and T. Kaplas, "Pyrolytic carbon coated black silicon," Sci. Rep., Vol. 6, No. 1, 25922, 2016.
    doi:10.1038/srep25922

    22. Hsu, C.-H., H.-C. Lo, C.-F. Chen, C. T. Wu, J.-S. Hwang, D. Das, J. Tsai, L.-C. Chen, and K.-H. Chen, "Generally applicable self-masked dry etching technique for nanotip array fabrication," Nano Lett., Vol. 4, No. 3, 471-475, 2004.
    doi:10.1021/nl049925t

    23. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, No. 12, 770-774, 2007.
    doi:10.1038/nnano.2007.389