Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-11
Reconstruction of 3D Anisotropic Objects by VIE and Model-Based Inversion Methods
By
Progress In Electromagnetics Research C, Vol. 83, 97-111, 2018
Abstract
A model-based inversion algorithm combined with the curl-conforming volume integral equation method is presented for the reconstruction of 3D anisotropic objects. The forward algorithm utilizes the curl-conforming volume integral equation method. The inversion algorithm is based on the Gauss-Newton method. The approach is applied to the reconstruction of the permittivities of 3D anisotropic objects. Moreover, sensitivity analysis of the data from different polarizations of transmitters and receivers to the anisotropic properties is performed. Numerical examples show the effectiveness of the inversion algorithm and demonstrate the sensitivities of data from different transmitter and receiver pairs to the anisotropy.
Citation
Lin E. Sun Mei Song Tong , "Reconstruction of 3D Anisotropic Objects by VIE and Model-Based Inversion Methods," Progress In Electromagnetics Research C, Vol. 83, 97-111, 2018.
doi:10.2528/PIERC18011031
http://www.jpier.org/PIERC/pier.php?paper=18011031
References

1. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Trans. on Medical Imaging, Vol. 9, No. 2, 218-225, Jun. 1990.
doi:10.1109/42.56334

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

3. Li, F., Q. H. Liu, and L.-P. Song, "Three-dimensional reconstruction of objects buried in layered media using born and distorted born iterative methods," IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 2, 107-111, Apr. 2004.
doi:10.1109/LGRS.2004.826562

4. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, Sep. 2004.
doi:10.2528/PIER03100702

5. Abubakar, A. and P. M. van den Berg, "Three-dimensional nonlinear inversion in cross-well electrode logging," Radio Sci., Vol. 33, 989-1004, Jul.-Aug. 1998.

6. Omeragic, D., L. E. Sun, V. Polyakov, Y.-H. Chen, X. Cao, T. Habashy, T. Vik, J. Rasmus, and J.-M. Denichou, "Characterizing teardrop invasion in horizontal wells in the presence of boundaries using LWD directional resistivity measurements," 54th Annual Society of Petrophysicists and Well Log Analysts (SPWLA) Symposium, Jun. 22-26, 2013.

7. Hu, Y., G. L. Wang, L. Liang, and A. Abubakar, "Estimation of reservoir parameters from inversion of triaxial induction data constrained by mud-filtrate invasion modeling," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2, 228-236, 2017.
doi:10.1109/JMMCT.2017.2787652

8. Firoozabadi, R. and E. L. Miller, "A shape-based inversion algorithm applied to microwave imaging of breast tumors," IEEE Trans. Antennas Propagat., Vol. 59, No. 10, 3719-3729, Oct. 2011.
doi:10.1109/TAP.2011.2163773

9. Li, M., A. Abubakar, and T. M. Habashy, "A three-dimensional model-based inversion algorithm using radial basis functions for microwave data," IEEE Trans. Antennas Propagat., Vol. 60, No. 7, 3361-3372, Jul. 2012.
doi:10.1109/TAP.2012.2196931

10. Sun, L. E. and W. C. Chew, "A novel formulation of the volume integral equation for electromagnetic scattering," Waves in Random and Complex Media, Vol. 19, No. 1, 162-180, Feb. 2009.
doi:10.1080/17455030802545658

11. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons. Inc., New York, 2002.