Vol. 87

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-10-15

Self-Adaptive Dynamic Differential Evolution Applied to BER Reduction with Beamforming Techniques for Ultra Wideband MU-MIMO Systems

By Chien-Ching Chiu, Guan-Da Lai, and Yu-Ting Cheng
Progress In Electromagnetics Research C, Vol. 87, 187-197, 2018
doi:10.2528/PIERC18082302

Abstract

This paper introduces an Ultra-Wideband (UWB) circle antenna array with beam forming techniques that combine Self-Adaptive Dynamic Differential Evolution (SADDE) which is capable to minimize the Bit Error Rate (BER) for Multi-User Multiple Input Multiple Output (MU-MIMO) in indoor communication system. By using the ray tracing techniques to compute any given indoor wireless environment, the impulse response of the system can be calculated, and the BER can be computed accordingly. Next, we analyze the BER performance of the UWB MU-MIMO system that applies beam forming for spatial division multiple accesses. Numerical results show that the SADDE can control the antenna feed length to reduce the BER and form the radiation beam pattern towards the direction of the desired signals while forming nulls to co-channel interferers for MU-MIMO system.

Citation


Chien-Ching Chiu, Guan-Da Lai, and Yu-Ting Cheng, "Self-Adaptive Dynamic Differential Evolution Applied to BER Reduction with Beamforming Techniques for Ultra Wideband MU-MIMO Systems," Progress In Electromagnetics Research C, Vol. 87, 187-197, 2018.
doi:10.2528/PIERC18082302
http://www.jpier.org/PIERC/pier.php?paper=18082302

References


    1. Asif, H. M., B. Honary, and H. Ahmed, "Multiple-input multiple-output ultra-wide band channel modeling method based on ray tracing," IET Communications, Vol. 6, No. 4, 1195-1204, 2012.
    doi:10.1049/iet-com.2011.0265

    2. Allam, A. M. M. A., S. Botros, A. M. G. Hemdan, and K. M. Ahmed, "Different channel models capacity calculations for different UWB MIMO antenna systems," Proc. IEEE Antennas & Propagation Conf., 1-5, Loughborough, UK, Nov. 2016.

    3. Pauline, S. S. and C. V. Lakshmi, "Evaluation of BER and capacity for ultra wide band communication receivers ," Proc. IEEE Information Communication and Embedded Systems, 1-5, Chennai, India, Feb. 2015.

    4. Sharma, S., V. Bhatia, and A. Gupta, "Sparsity based UWB receiver design in additive impulse noise channels," Proc. IEEE Signal Processing Advances in Wireless Communications, 1-5, Edinburgh, UK, Aug. 2016.

    5. Abdallah, A. B., A. Zribi, A. Dziri, F. Tlili, and M. Terre, "Ultra wide band audio visual PHY IEEE 802.15.3c for SPIHT-compressed image transmission," Proc. IEEE Signal, Image, Video and Communications, 59-64, Tunis, Tunisia, Apr. 2017.

    6. Mehrotra, R. and R. Bose, "Green design for smart antenna system using iterative beamforming algorithms," IEE Computing, 525-529, Mar. 2015.

    7. Rothna, P., B. W. Ku, K. S. Kim, and Y. S. Cho, "Receive beamforming techniques for an LTE-based mobile relay station with a uniform linear array," IEEE Transactions on Vehicular Technology, Vol. 64, No. 7, 3299-3304, Jul. 2015.

    8. Jain, M. and R. P. Agarwal, "Capacity & coverage enhancement of wireless communication using smart antenna system," IEEE Advances in Electrical, 310-313, Aug. 2016.

    9. Chien, W., C. C. Chiu, Y. T. Cheng, S. H. Liao, and H. S. Yen, "Multi-objective optimization for UWB antenna array by APSO algorithm," Telecommunication System, Vol. 64, No. 4, 649-660, Apr. 2017.
    doi:10.1007/s11235-016-0197-8

    10. Salameh, H. B. and T. Hailat, "Iterative beam forming algorithm for improved throughput in multi-cell multi-antenna wireless systems," IET Communications, Vol. 9, No. 13, 1619-1626, 2015.
    doi:10.1049/iet-com.2014.0786

    11. Pec, R., B. W. Ku, K. S. Kim, and Y. S. Cho, "Receive beamforming techniques for an LTE-based mobile relay station with a uniform linear array," IEEE Transactions on Vehicular Technology, Vol. 64, No. 7, 3299-3304, Jul. 2015.

    12. Guo, L., H. Deng, B. Himed, T. Ma, and Z. Geng, "Waveform optimization for transmit beamforming with MIMO radar antenna arrays," IEEE Transactions on Antenna and Propagation, Vol. 63, No. 2, 543-552, Feb. 2015.
    doi:10.1109/TAP.2014.2382637

    13. Ni, Y. Y., S. Jin, W. Xu, Y. Y.Wang, M. Matthaiou, and H. B. Zhu, "Beamforming and interference cancellation for D2D communication underlaying cellular networks," IEEE Transactions on Communications, Vol. 64, No. 2, 832-846, Feb. 2016.
    doi:10.1109/TCOMM.2015.2507574

    14. Wang, X., Y. Wang, and S. Ma, "Upper bound on uplink sum rate for multi-cell massive MU-MIMO systems with ZF receivers," IEEE Wireless Communications Letters, Vol. 6, No. 2, 250-253, Feb. 2017.
    doi:10.1109/LWC.2017.2666804

    15. Manisha, K. and B. Ravinder, "Design of microstrip patch antenna for ultra wide band applications," International Journal of Recent Advances in Science & Engineering, Vol. 1, No. 1, Mar. 2015.

    16. Talom, F. T., B. Uguen, L. Rudant, J. Keignart, J. F. Pintos, and P. Chambelin, "Evaluation and characterization of an UWB antenna in time and frequency domains," Proc. IEEE International Conference on Ultra-Wideband, 669-673, Sept. 2006.

    17. Li, Z. X. and Y. Q. Jin, "Numerical simulation of bistatic scattering from fractal rough surface in the finite element method," Science in China (Series E), Vol. 44, 1218, 2001.

    18. Chen, S. H. and S. K. Jeng, "An SBR/Image approach for indoor radio propagation in a corridor," IEICE Trans. Electron., Vol. E78-C, 1058-1062, 1995.

    19. Chen, S. H. and S. K. Jeng, "SBR/Image approach for indoor radio propagation in tunnels with and without traffic," IEEE Transactions on Vehicular Technology, Vol. 45, 570-578, 1996.
    doi:10.1109/25.533772

    20. Homier, E. A. and R. A. Scholtz, "Rapid acquisition of ultra-wideband signals in the dense multi-path channel," Proc. IEEE Conference on Ultra Wideband Systems and Technologies, 105-109, 2002.

    21. Chiu, C. C., C. L. Liu, and S. H. Liao, "Channel characteristics of ultra wideband systems with single co-channel interference," Wireless Communications and Mobile Computing, Vol. 13, No. 9, 864-873, Jun. 2013.
    doi:10.1002/wcm.1146

    22. Chien, W., C. C. Chiu, Y. T. Cheng, S. H. Liao, and H. S. Yen, "Multi-objective optimization for UWB antenna array by APSO algorithm," Telecommunication System, Vol. 64, No. 4, 649-660, Apr. 2017.
    doi:10.1007/s11235-016-0197-8

    23. Cheng, Y. T., C. C. Chiu, S. P. Chang, and J. C. Hsu, "Microwave imaging for half-space imperfect conductors," Nondestructive Testing and Evaluation, Vol. 30, No. 1, 49-62, Jan. 2015.
    doi:10.1080/10589759.2014.992430

    24. Yu, C. Y., C. C. Chiu, Y. K. Chou, and S. C. Shen, "Microwave imaging in frequency domain for through-wall multiple conductors ," Journal of Testing and Evaluation, Vol. 44, No. 4, 1617-1623, Jul. 2016.

    25. Chiu, C. C., C. Y. Yen, and G. Z. Lee, "Dielectric objects reconstruction by combining subspace-based algorithm and randomly global optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 1, 77-91, Jan. 2018.
    doi:10.1080/09205071.2017.1369905