In this paper, we present a novel design for an end-fire antenna, which generalizes the concept of conventional Yagi-Uda antenna by introducing multiple driven elements. Through using the method of maximum power transmission efficiency, the optimal distribution of excitations for the multiple driven elements can be obtained, and the end-fire gain of the array can be significantly improved in comparison with the conventional Yagi-Uda antenna with a single driven element. In order to demonstrate the new idea, two different types of antenna arrays are designed and fabricated. The first design uses a split-ring resonator (SRR) as radiating element. Compared to similar planar Yagi-Uda SRR antenna arrays previously reported, the number of antenna elements can be reduced from fifteen to eight, and the longitudinal dimension is significantly reduced by 46% while the same performances are maintained with the gain reaching 11.7 dBi at 5.5 GHz. In the second design, printed half-wavelength dipoles are used as the antenna elements. It is shown that an eight-element dipole array with four driven elements has a peak gain of 13.4 dBi at 2.45 GHz, which is 1.8 dB higher than the conventional printed Yagi-Uda dipole antenna array with the same number of elements.
2. Uda, S., "On the wireless beam of short electric waves," J. Inst. Elect. Eng., Vol. 472, 1209-1219, Nov. 1927.
doi:10.1109/JRPROC.1928.221464
3. Yagi, H., "Beam transmission of the ultra short waves," Proc. IRE, Vol. 16, No. 6, 715-741, Jun. 1928.
doi:10.1109/TAP.1973.1140551
4. Cheng, D. K. and C. A. Chen, "Optimum element spacings for Yagi-Uda arrays," IEEE Trans. Antennas Propag., Vol. 21, No. 5, 615-623, Sep. 1973.
doi:10.1109/TAP.1975.1141001
5. Chen, C. A. and D. K. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Trans. Antennas Propag., Vol. 23, No. 1, 8-15, Jan. 1975.
doi:10.1109/APS.1989.134838
6. Huang, J., "Planar microstrip Yagi array antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 2, 894-897, Jun. 1989.
7. Densmore, A. and J. Huang, "Microstrip Yagi antenna for mobile satellite service," IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 616-619, Jun. 1991.
doi:10.1109/8.86924
8. Huang, J. and A. Densmore, "Microstrip Yagi antenna for mobile satellite vehicle application," IEEE Trans. Antennas Propag., Vol. 39, No. 7, 1024-1030, Jul. 1991.
9. Ke, S. and K. Wong, "Rigorous analysis of rectangular microstrip antennas with parasitic patches," IEEE Antennas Propag. Society Int. Symp., Vol. 2, 968-971, Jun. 1995.
doi:10.1109/8.668900
10. Gray, D., J. Lu, and D. Thiel, "Electronically steerable Yagi-Uda microstrip patch antenna array," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 605-608, May 1998.
doi:10.1109/22.846717
11. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 6, 910-918, Jun. 2000.
doi:10.1109/TAP.2004.827543
12. Grajek, P. R., B. Schoenlinner, and G. M. Rebeiz, "A 24 GHz high-gain Yagi-Uda antenna array," IEEE Trans. Antennas Propag., Vol. 52, No. 5, 1257-1261, May 2004.
doi:10.1109/TAP.2006.889818
13. De Jean, G. and M. Tentzeris, "A new high-gain microstrip Yagi array antenna with a high frontto- back (F/B) ratio for WLAN and millimeter wave applications," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 298-304, Feb. 2007.
doi:10.1109/TAP.2012.2230239
14. Liu, J. H. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1140-1147, Mar. 2013.
doi:10.2528/PIERL12120407
15. Ding, Y., Y. C. Jiao, B. Li, and L. Zhang, "Folded triple-frequency quasi-Yagi-type antenna with modified CPW-to-CPS transition," Progress In Electromagnetics Research Letters, Vol. 37, 143-152, 2013.
doi:10.2528/PIERC13111803
16. Wang, Z. D., X. L. Liu, Y. Z. Yin, J. H. Wang, and Z. Li, "A novel design of folded dipole for broadband printed Yagi-Uda antenna," Progress In Electromagnetics Research C, Vol. 46, 23-30, 2014.
17. Wang, H., S. F. Liu, W. T. Li, and X. W. Shi, "Design of a wideband planar microstrip-fed quasi-Yagi antenna," Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014.
doi:10.2528/PIERL14072507
18. Zhang, S., Z. Tang, and Y. Yin, "Wideband planar printed quasi-Yagi antenna with band-notched characteristic," Progress In Electromagnetics Research Letters, Vol. 48, 137-143, 2014.
doi:10.1109/TAP.2015.2427853
19. Hu, Z. X., Z. X. Shen, W. Wu, and J. Lu, "Low-profile top-hat monopole Yagi antenna for end-fire radiation," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2851-2857, Jul. 2015.
doi:10.1109/LAWP.2016.2629499
20. Hu, Z. X., W. W.Wang, Z. X. Shen, and W.Wu, "Low-profile helical quasi-Yagi antenna array with multibeams at the endfire direction," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1241-1244, May 2017.
doi:10.1109/LAWP.2015.2469677
21. Yeo, J. and J. I. Lee, "Bandwidth enhancement of double-dipole quasi-yagi antenna using stepped slotline structure," IEEE Antennas Wireless Propag. Lett., Vol. 15, 694-697, Mar. 2016.
22. Wu, Y., M. Qu, L. Jiao, Y. Liu, and Z. Ghassemlooy, "Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns," AIP Advances, Vol. 6, No. 065308, 1-11, 2016.
doi:10.2528/PIERC16101601
23. Zhao, T. H., Y. Xiong, X. Yu, and H. H. Chen, "A broadband planar quasi-Yagi antenna with a modified bow-tie driver for multi-band 3G/4G applications," Progress In Electromagnetics Research C, Vol. 71, 59-67, 2017.
doi:10.1109/ACCESS.2018.2838328
24. Xu, K. D., D. T. Li, Y. H. Liu, and Q. H. Liu, "Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications," IEEE Access, Vol. 6, 31695-31702, Mar. 2018.
doi:10.1109/LAWP.2016.2629079
25. Aguila, P., S. Zuffanelli, G. Zamora, F. Paredes, F. Martın, and J. Bonache, "Planar yagi-uda antenna array based on split-ring resonators (SRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1233-1236, May 2017.
doi:10.1109/LAWP.2016.2647319
26. Cai, X., W. Geyi, and H. C. Sun, "A printed dipole array with high gain and endfire radiation," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1512-1515, Jun. 2017.
27. Wen, G., Foundations of Applied Electrodynamics, 273-275, Wiley, New York, NY, USA, 2010.
doi:10.1142/9040
28. Wen, G., Foundations for Radio Frequency Engineering, 410-420, World Scientific, 2015.
doi:10.1109/LAWP.2015.2428931
29. Jiang, Y. H., W. Geyi, L. S. Yang, and H. C. Sun, "Circularly-polarized focused microstrip antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 52-55, Feb. 2016.
30. Sun, H. C. and W. Geyi, "Optimum design of wireless power transmission systems in unknown electromagnetic environments," IEEE Access, Vol. 5, 20198-20206, Oct. 2017.
doi:10.1109/ACCESS.2018.2813299
31. Wan, W., W. Geyi, and S. Gao, "Optimum design of low-cost dual-mode beam-steerable arrays for customer-premises equipment applications," IEEE Access, Vol. 6, 16092-16098, Mar. 2018.
doi:10.1109/TAP.2018.2882653
32. Cai, X. and W. Geyi, "An optimization method for the synthesis of flat-top radiation patterns in the near- and far-field regions," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 980-987, Feb. 2019.
doi:10.1109/TMTT.2015.2432762
33. Zuffanelli, S., G. Zamora, P. Aguila, F. Paredes, F. Martın, and J. Bonache, "On the radiation properties of split-ring resonators (SRRs) at the second resonance," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 7, 2133-2141, Jul. 2015.