Vol. 98
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-31
Wideband Designs of Sectoral Microstrip Antennas Using Parasitic Arc Shape Patches
By
Progress In Electromagnetics Research C, Vol. 98, 97-107, 2020
Abstract
Wide bandwidth and high gain designs of sectoral microstrip antennas gap-coupled with parasitic arc shape patches are proposed. In 1800 MHz frequency band, optimum response with bandwidth of more than 50% and peak gain of 10 dBi is obtained for 30° sectoral angle employing two gap-coupled arc shape patches. Further gap-coupled variations of slot cut single arc shape patch with 60° sectoral patch is presented. This design yields bandwidth of above 930 MHz (~53%) with peak gain of more than 10 dBi. The comparison for the proposed gap-coupled sectoral variations with reported antennas is presented. Proposed gap-coupled sectoral configurations are single layer and thus simple in design and yet offers bandwidth and gain of larger than 50% and 10 dBi, respectively.
Citation
Amit A. Deshmukh Sanjay B. Deshmukh , "Wideband Designs of Sectoral Microstrip Antennas Using Parasitic Arc Shape Patches," Progress In Electromagnetics Research C, Vol. 98, 97-107, 2020.
doi:10.2528/PIERC19110704
http://www.jpier.org/PIERC/pier.php?paper=19110704
References

1. Balanis, C. A., Antenna Theory & Design, 3rd Ed., John Wiley & Sons Inc. Publication, 2005.

2. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas Vol. I, London Peter Peregrinus, 1989.

3. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, 1st Ed., Artech House, USA, 2003.

4. Wong, K. L., Compact and Broadband Microstrip Antennas, 1st Ed., John Wiley & sons, Inc., New York, USA, 2002.
doi:10.1002/0471221112

5. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and parasitic patches," Microwave and Optical Technology Letters, Vol. 22, No. 5, 348-349, 1999.
doi:10.1002/(SICI)1098-2760(19990905)22:5<348::AID-MOP16>3.0.CO;2-V

6. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703

7. Lee, H. F. and W. Chen, Advances in Microstrip and Printed Antennas, John Wiley & Sons, New York, 1997.

8. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas & Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

9. Deshmukh, A. A. and G. Kumar, "Compact broadband rectangular microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 6, 1043-1046, 2006.
doi:10.1002/mop.21595

10. Wadkar, S., B. Hogade, R. Chopra, and G. Kumar, "Broadband and high gain stacked microstrip antenna array," Microwave and Optical Technology Letters, 1-7, 2019, https://doi.org/10.1002/mop.31813.

11. Ray, K. P., S. Ghosh, and K. Nirmala, "Multilayer multiresonator circular microstrip antennas for broadband and dual-band operations," Microwave and Optical Technology Letters, Vol. 47, No. 5, 489-494, 2005.
doi:10.1002/mop.21208

12. Ansari, J. A., N. P. Yadav, A. Mishra, P. Singh, and B. R. Vishvakarma, "Analysis of multilayer rectangular patch antenna for broadband operation," Wireless Personal Communication, Vol. 62, 315-327, 2012.
doi:10.1007/s11277-010-0055-z

13. Yeung, S. H. and C.-F. Wang, "Study of a parasitic U-slotpatch array antenna with characteristic mode analysis," Microwave and Optical Technology Letters, Vol. 60, 482-488, 2018, https://doi.org/10.1002/mop.30992.
doi:10.1002/mop.30992

14. Chen, H.-D., C.-Y.-D. Sim, J.-Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116

15. Lee, S.-R., E.-H. Lim, and F.-L. Lo, "Broadband single-layer E-patch reflectarray," Radioengineering, Vol. 26, No. 1, 97-106, 2017.
doi:10.13164/re.2017.0097

16. Cao, W., X. Lv, Q. Wang, Y. Zhao, and X. Yang, "Wideband circularly polarized Fabry-Perot resonator antenna in Ku band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 586-590, 2019.
doi:10.1109/LAWP.2019.2896940

17. Hannachi, C., D. Tarek, and S. O. Tatu, "Broadband waveguide-fed 8-by-1 gap-coupled microstrip antenna array for 60-GHz short-range point-to-point wireless communications," Progress In Electromagnetics Research Letters, Vol. 83, 7-14, 2019.
doi:10.2528/PIERL18113001

18. Elboushi, A. and A. Sebak, "High-gain hybrid microstrip/conical horn antenna for MMW applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 129-132, 2012.
doi:10.1109/LAWP.2012.2184256

19. Kumar, H. and G. Kumar, "A broadband planar modified Quasi-Yagi using log-periodic antenna," Progress In Electromagnetics Research Letters, Vol. 73, 23-30, 2018.
doi:10.2528/PIERL17102005

20. Sakthi Abirami, B. and E. F. Sundarsingh, "EBG-backed flexible printed Yagi-Uda Antenna For On-Body Communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3762-3765, 2017.
doi:10.1109/TAP.2017.2705224

21. CST Microwave Studio suite, Version 2019, .
doi:10.1109/TAP.2017.2705224

22. Deshmukh, A. A. and S. B. Deshmukh, "Wide band designs of 60 sectoral microstrip antenna using parasitic angular sectoral patches," Proceedings of ICWiCOM 2017, Mumbai, India, January 19-20, 2018, https://link.springer.com/chapter/10.1007%2F978-981-10-8339-6 24.