Vol. 50
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-11-07
Multiple Fano Resonances Structure for Terahertz Applications
By
Progress In Electromagnetics Research Letters, Vol. 50, 1-6, 2014
Abstract
A new planar engineered material structure, which has multiple Fano resonances at the terahertz range of frequency, is presented. Starting with a double Fano resonance structure, it is shown that by considering several unit cells as a larger unit cell and creating new asymmetries in the super-cell, we can have five Fano resonances in one structure. Analysis of current distributions at resonance frequencies clarifies the origin of different resonances. We show that all of these resonances come from different arrangement of magnetic dipoles.
Citation
Hadi Amarloo, Daniel M. Hailu, and Safieddin Safavi-Naeini, "Multiple Fano Resonances Structure for Terahertz Applications," Progress In Electromagnetics Research Letters, Vol. 50, 1-6, 2014.
doi:10.2528/PIERL14100203
References

1. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 14740114, 2007.
doi:10.1103/PhysRevLett.99.147401

2. Singh, R., C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B, Vol. 79, No. 8, 085111, 2009.
doi:10.1103/PhysRevB.79.085111

3. Singh, R., I. A. I. Al-Naib, M. Koch, and W. Zhang, "Sharp Fano resonances in THz metamaterials," Opt. Express, Vol. 19, No. 7, 6312-6319, 2011.
doi:10.1364/OE.19.006312

4. Xiao, X., J.Wu, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, "Fano effect of metamaterial resonance in terahertz extraordinary transmission," Appl. Phys. Lett., Vol. 98, No. 1, 011911, 2011.
doi:10.1063/1.3541652

5. Cao, W., R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, No. 16, 3366-3368, 2012.
doi:10.1364/OL.37.003366

6. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, No. 3, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257

7. Hao, F., Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Lett., Vol. 8, 3983-3988, 2008.
doi:10.1021/nl802509r

8. Lukyanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

9. Giannini, V., Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, "Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach," Nano Lett., Vol. 11, No. 7, 2835-2840, 2011.
doi:10.1021/nl201207n

10. Chen, Y. T., R. L. Chern, and H. Y. Lin, "Multiple Fano resonances in metallic arrays of asymmetric dual stripes," Appl. Opt., Vol. 49, 2819-2826, 2010.
doi:10.1364/AO.49.002819

11. Liu, S.-D., Z. Yang, R.-P. Liu, and X.-Y. Li, "Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings," ACS Nano, Vol. 6, No. 7, 6260-6271, 2012.
doi:10.1021/nn3017052

12. Liu, S. D., M. J. Zhang, W. J. Wang, and Y. C. Wang, "Tuning multiple Fano resonances in plasmonic pentamer clusters," Appl. Phys. Lett., Vol. 102, 133105, 2013.
doi:10.1063/1.4800563

13. Zhang, J. and A. Zayats, "Multiple Fano resonances in single-layere nonconcentric core-shell nanostructures," Opt. Express, Vol. 21, No. 7, 8426-8436, 2013.
doi:10.1364/OE.21.008426

14. Wang, J., C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, "Double Fano resonance due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity," Opt. Express, Vol. 21, No. 2, 2236-2244, 2013.
doi:10.1364/OE.21.002236

15. Born, N., I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, "Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices," Appl. Phys. Lett., Vol. 104, 101107, 2014.
doi:10.1063/1.4868420