Vol. 99
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-01
Low Divergence Angle OAM Fabry-Perot Antenna with Non-Uniform Superstrate
By
Progress In Electromagnetics Research Letters, Vol. 99, 55-63, 2021
Abstract
This paper proposes two low divergence angle orbital angular momentum (OAM) Fabry-Perot (F-P) antennas with nonuniform superstrates. There are two steps to design the proposed two F-P antennas. First, two primary array antennas (a slot array antenna and a patch array antenna) are designed. Both antennas can generate OAM vortex beams with a mode of -1. Second, two F-P resonator cavity antennas are formed by loading a nonuniform partially reflective surfaces (PRS) superstrates above the two primary antennas in order to increase the antenna gain and reduce the divergence angle. The PRS is designed non-uniform for increasing the aperture efficiency. The measured results indicate that the F-P OAM antennas can obviously improve the performance of primary OAM antennas: (1) for the slot array antenna, the divergence angle reduces from 27° to 18°, and the maximum gain increases from 5.2 dBi to 7.5 dBi; (2) for the patch array antenna, the divergence angle decreases from 30° to 18°, and the peak gain increases from 3.4 dBi to 7.2 dBi.
Citation
Hui-Fen Huang, and Qi-Sheng Fan, "Low Divergence Angle OAM Fabry-Perot Antenna with Non-Uniform Superstrate," Progress In Electromagnetics Research Letters, Vol. 99, 55-63, 2021.
doi:10.2528/PIERL21061902
References

1. Thide, B., et al. "Utilization of photon orbital angular momentum in the low-frequency radio domai," Phys. Rev. Lett., Vol. 99, No. 8, Art. no. 087701, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701

2. Hell, S. W., "Toward fluorescence nanoscopy," Nature Biotechnol., Vol. 21, 1347-1355, Oct. 2003.

3. Harwit, M., "Photon orbital angular momentum in astrophysics," Astrophys. J., Vol. 597, 1266-1270, Nov. 2003.

4. Leach, J., B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, "Quantum correlations in optical angle-orbital angular momentum variables," Science, Vol. 329, 662-665, Aug. 2010.
doi:10.1126/science.1190523

5. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, Art. no. 153901, Apr. 2005.

6. Shapiro, J., S. Guha, and B. Erkmen, "Ultimate channel capacity of free-space optical communications," J. Opt. Netw., Vol. 4, No. 8, 501-516, 2005.
doi:10.1364/JON.4.000501

7. Wang, J., J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photon., Vol. 6, 488-496, Jun. 2012.
doi:10.1038/nphoton.2012.138

8. Bai, X., X. Liang, R. Jin, and J. Geng, "Generation of OAM radio waves with three polarizations using circular horn antenna array," Proc. 9th Eur. Conf. Antennas Propag. (EuCAP), 1-4, Apr. 2015.

9. Hui, X., et al. "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

10. Byun, W.-J., Y.-S. Lee, B. S. Kim, K. S. Kim, M. S. Kang, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
doi:10.1049/el.2015.1833

11. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased arrayfor generating OAM radio beams," Electron. Lett., Vol. 50, No. 20, 1414-1415, Sep. 2014.
doi:10.1049/el.2014.2860

12. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

13. Yan, Y., et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876

14. Xue, W., X. Chen, X. Liu, X. Meng, A. Zhang, and W. E. I. Sha, "A revisit of orbital angular momentum multiplexing in multipath environment," Journal of Communications and Information Networks, Vol. 5, No. 4, 438-446, Dec. 2020.

15. Huang, H.-F. and S.-N. Li, "Single-layer dual-frequency unit for multifunction OAM reflectarray applications at the microwave range," Opt. Lett., Vol. 45, No. 18, 5165-5168, 2020.
doi:10.1364/OL.398463

16. Li, W., L. Zhang, S. Yang, K. Zhuo, L. Ye, and Q. H. Liu, "A reconfigurable second-order OAM patch antenna with simple structure," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1531-1535, Sep. 2020.
doi:10.1109/LAWP.2020.3008447

17. Allen, B., et al. "Reduction of orbital angular momentum radio beam divergence using a 3D printed planar graded index lenses," Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), 1-3, London, U.K., 2018.

18. Li, F., et al. "Generation and focusing of orbital angular momentum based on polarized reflectarray at microwave frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, 1829-1837, Mar. 2021.
doi:10.1109/TMTT.2020.3040449

19. Wu, G.-B., K. F. Chan, and C. H. Chan, "3-D printed terahertz lens to generate higher-order Bessel beams carrying OAM," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3399-3408, Jun. 2021.
doi:10.1109/TAP.2020.3030915

20. Yao, Y., X. Liang, R. Jin, and J. Geng, "Analysis of focusing orbital angular momentum wave using Fabry-Perot cavity," Journal of Communications and Information Networks, Vol. 4, No. 3, 9-17, Sept. 2019.

21. Bai, X., "Rotman lens-fed Fabry-Perot resonator antennas for generating converged multi-mode OAM beams," IEEE Access, Vol. 7, 105768-105775, 2019.
doi:10.1109/ACCESS.2019.2932199

22. Wei, W. L., K. Mahdjoubi, C. Brousseau, O. Emile, and A. Sharaiha, "Enhancement of directivity of an OAM antenna by using Fabry-Perot cavity," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, 2016.

23. Bai, X., Y. Sun, P. Hu, J. Chen, W. Yan, X. Liang, C. He, J. Geng, and R. Jin, "Improvement on the multi-mode beams divergence of OAM array by using Fabry-Perot cavity," Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2193-2194, IEEE, San Diego, CA, USA, Jul. 2017.

24. Ma, L., C. Chen, L. Zhou, S. Jiang, and H. Zhang, "Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity," Appl. Phys. Lett., Vol. 114, No. 8, Art. no. 081603, 2019.

25. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna," IEEE Antennas Wireless. Propag. Lett., Vol. 17, No. 1, 122-125, Jan. 2018.
doi:10.1109/LAWP.2017.2777502