Vol. 101
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-21
An Embroidered Passive Textile RFID Tag Based on a T-Matched Antenna
By
Progress In Electromagnetics Research Letters, Vol. 101, 137-145, 2021
Abstract
This paper addresses the design and fabrication of an embroidered textile RFID tag antenna. The main feature of this design is that we have embroidered an RFID chip on the textile support which avoids the use of metallic wires or soldering. The modeled equivalent circuit of the tag is presented to get physical insight into RFID tag antenna design. The detailed results given in this paper include the effect of the bending and the human body proximity on the antenna performance. It is shown that the bending does not introduce a conspicuous effect on the tags read range while the dissipative characteristics of the human body cause a gain and read range reduction. The proposed design may find applications in wearable devices dedicated to health monitoring applications.
Citation
Mohamed El Bakkali Otman El Mrabet Mohammed Kanjaa Ignacio Gil Raúl Fernandez-Garcia , "An Embroidered Passive Textile RFID Tag Based on a T-Matched Antenna," Progress In Electromagnetics Research Letters, Vol. 101, 137-145, 2021.
doi:10.2528/PIERL21091405
http://www.jpier.org/PIERL/pier.php?paper=21091405
References

1. Liukkonen, M., "RFID technology in manufacturing and supply chain," International Journal of Computer Integrated Manufacturing, Vol. 28, No. 8, 861-880, 2015.
doi:10.1080/0951192X.2014.941406

2. Adame, T., A. Bel, A. Carreras, J. Melia-Segui, M. Oliver, and R. Pous, "CUIDATS: An RFID- WSN hybrid monitoring system for smart health care environments," Future Generation Computer Systems, Vol. 78, Part 2, 602-615, 2018.

3. Mehmood, A., et al., "Body movement-based controlling through passive RFID integrated into clothing," IEEE J. Radio Freq. Identif., Vol. 4, No. 4, 414-419, 2020.
doi:10.1109/JRFID.2020.3010717

4. Yu, M., X. Shang, M. Wang, Y. Liu, and T. T. Ye, "Exploiting embroidered UHF RFID antennas as deformation sensors," IEEE J. Radio Freq. Identif., Vol. 4, No. 4, 406-413, 2020.
doi:10.1109/JRFID.2020.3030790

5. Ivsic, B., D. Bonefacic, and J. Bartolic, "Textile antennas for on-body sensors," SAS 2015 --- 2015 IEEE Sensors Appl. Symp. Proc., June 2015.

6. Koski, K., et al., "Practical read range evaluation of wearable embroidered UHF RFID tag," IEEE Antennas Propag. Soc. AP-S Int. Symp., 2012.

7. Kellomaki, T., "On-body performance of a wearable single-layer RFID tag," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 73-76, 2012.
doi:10.1109/LAWP.2012.2183112

8. Oyeka, D. O., J. C. Batchelor, and A. M. Ziai, "Effect of skin dielectric properties on the read range of epidermal ultra-high frequency radio-frequency identification tags," Healthc. Technol. Lett., Vol. 4, No. 2, 78-81, 2017.
doi:10.1049/htl.2016.0072

9. Rahman, N. H. A., Y. Yamada, and M. S. A. Nordin, "Analysis on the effects of the human body on the performance of electro-textile antennas for wearable monitoring and tracking application," Materials (Basel)., Vol. 12, No. 10, 1-17, 2019.

10. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas Propag. Mag., Vol. 50, No. 1, 66-79, 2008.
doi:10.1109/MAP.2008.4494504

11. Sockolov, K. and D. Arakaki, "UHF RFID antenna impedance matching techniques," 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., 2433-2434, 2017.

12. Sohrab, A. P., Y. Huang, M. Hussein, M. Kod, and P. Carter, "A UHF RFID tag with improved performance on liquid bottles," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1673-1676, 2016.
doi:10.1109/LAWP.2016.2521786

13. El Bakkali, M., M. Martinez-Estrada, R. Fernandez-Garcia, I. Gil, and O. El Mrabet, "Effect of bending on a textile UHF-RFID tag antenna," 14th Eur. Conf. Antennas Propagation, EuCAP 2020, 2020.

14., , CST STUDIO SUITE CST AG, Germany, www.cst.com.