Vol. 102
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-17
Anti-Crosstalk Noise Performance Analysis of Multi-Symbol Transmission and Joint Crosstalk Reduction Method
By
Progress In Electromagnetics Research Letters, Vol. 102, 67-75, 2022
Abstract
Crosstalk between interconnected lines is considered from two perspectives in this study. From a physical space perspective, the four transmission lines are reduced to two transmission lines. Meanwhile, the replacement of signal transmission of four-channels 2PAM (Pulse Amplitude Modulation) with signal transmission of two-channels 4PAM can reduce the quantity of transmission line and increase the space between the transmission lines. Thus, it can reduce the crosstalk. Under the same signal-to-noise ratio (SNR), the change in symbol error rate (SER) after signals of four-channels 2PAM are changed to those of two-channels 4PAM is given. Results show that the latter has an advantage in anti-crosstalk compared with the former in terms of the influence of crosstalk on SER. From the signal space perspective, applying signal linear combination transformation can convert the multiplexing signals in the interconnects into orthogonal mode. This process can cancel the crosstalk. In this study, the two methods are combined to save wiring while reducing crosstalk. ADS simulation results show that the eye pattern of 4 PAM signal recovers well by saving half the number of transmission lines.
Citation
Yafei Wang Rui Li Chenlong Li Yanxiao Zhao Xuehua Li , "Anti-Crosstalk Noise Performance Analysis of Multi-Symbol Transmission and Joint Crosstalk Reduction Method," Progress In Electromagnetics Research Letters, Vol. 102, 67-75, 2022.
doi:10.2528/PIERL21102701
http://www.jpier.org/PIERL/pier.php?paper=21102701
References

1. Mao, J. and M. Tang, High Speed Integrated Circuit Interconnection, Science Press, Beijing, 2017.

2. Halligan, M. and D. Beetner, "Maximum crosstalk estimation in, weakly coupled transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 736-743, 2014.
doi:10.1109/TEMC.2014.2304735

3. Gao, X., et al., "Crosstalk suppression based on mode mismatch between spoof spp transmission line and microstrip," IEEE Transactions on Components, Packaging and Manufacturing Technology, 1-7, 2019.

4. Zhang, L., et al., "Far-end crosstalk mitigation for microstrip lines in high-speed PCBs," Proceedings of 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, Taiyuan, China, July 18-21, 2019.

5. Refaie, M. I., W. S. El-Deeb, and M. I. Abdalla, "A study of using graphene coated microstrip lines for crosstalk reduction at radio frequency," Proceedings of the 35th National Radio Science Conference (NRSC), 85-90, Cairo, Egypt, March 20-22, 2018.

6. Xu, J. and S. Wang, "Investigating a guard trace ring to suppress the crosstalk due to a clock trace on a power electronics DSP control board," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 546-554, 2015.
doi:10.1109/TEMC.2015.2403289

7. Almalkawi, M. and V. Devabhaktuni, "Far-end crosstalk reduction in PCB interconnects using stepped impedance elements and open-circuited," International Journal of RF and Microwave Computer --- Aided Engineering, Vol. 21, No. 5, 596-601, 2011.
doi:10.1002/mmce.20547

8. Wang, Y., Y. Zhao, and X. Li, "Crosstalk suppression by applying multilevel transmission," Progress In Electromagnetics Research Letters, Vol. 81, 45-50, 2019.

9. Wang, Y., H. Sun, and X. Li, "Non-crosstalk scheme based on linear combination transformation in high-speed interconnects," Progress In Electromagnetics Research Letters, Vol. 85, 45-50, 2019.

10. Wang, Y., et al., "Minimizing crosstalk for high-speed, high-density bus systems using the sample-decision method," High Technology Letters, Vol. 20, No. 1, 16-21, 2014.

11. Li, P., Jitter, Noise, and Signal Integrity at High-Speed, Prentice Hall, New Jersey, 2008.

12. Mbairi, F. D., W. P. Siebert, and H. Hesselbom, "High-frequency transmission lines crosstalk reduction using spacing rules," IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, 601-610, 2008.
doi:10.1109/TCAPT.2008.2001163