Vol. 103
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-02-14
A CMOS Compatible Broadband Ruthroff 1:2 TLT Balun Using Broadside-Coupled Lines and Stacked Microstrip Lines
By
Progress In Electromagnetics Research Letters, Vol. 103, 1-6, 2022
Abstract
Implementation of a broadband Ruthroff-type transmission line transformer balun with a 1:2 step-up impedance transformation ratio is presented in this letter. The proposed Transmission Line Transformer (TLT) balun was investigated with broadside-coupled lines using three stacked microstrip lines. The proposed balun was formed by cascading one section of modified Ruthroff-type 2:1 unbalanced-to-unbalanced TLT with one section of Ruthroff-type 1:4 TLT balun in series. The achieved fractional bandwidth of the balun is 192.17% over the frequency range from 1.2 to 6.6 GHz, which covers the IEEE 802.11 a/b/g WLAN, WiMAX applications. The measured amplitude and phase imbalances are less than 1 dB and less than 4.51˚, respectively at this frequency range.
Citation
Zeyneb Cheraiet, Mohamed Toufik Benhabiles, Tarek Djerafi, Farouk Grine, and Mohamed Lahdi Riabi, "A CMOS Compatible Broadband Ruthroff 1:2 TLT Balun Using Broadside-Coupled Lines and Stacked Microstrip Lines," Progress In Electromagnetics Research Letters, Vol. 103, 1-6, 2022.
doi:10.2528/PIERL22010402
References

1. Niida, Y., M. Sato, T. Ohki, and N. Nakamura, "A 0.6-2.1-GHz wideband GaN high-power amplifier using transmission-line-transformer-based differential-mode combiner with second-harmonic suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, 1675-1683, 2021.
doi:10.1109/TMTT.2021.3053977

2. Wu, Y.-C., Y.-J. Hwang, C.-C. Chiong, B.-Z. Lu, and H. Wang, "An innovative joint-injection mixer with broadband IF and RF for advanced heterodyne receivers of millimeter-wave astronomy," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5408-5422, 2020.
doi:10.1109/TMTT.2020.3017197

3. Lee, S., J. Park, and S. Hong, "Antenna switch embedded in transmission line transformers of differential PA and LNA," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 3, 284-287, 2020.
doi:10.1109/LMWC.2020.3044928

4. Yang, Y., Y. Wu, Z. Zhuang, M. Kong, W. Wang, and C. Wang, "An ultraminiaturized bandpass filtering Marchand balun chip with spiral coupled lines based on GaAs integrated passive device technology," Journal Title Abbreviation, Vol. 48, No. 9, 3067-3075, 2020.

5. Yang, G., R. Chen, and K. Wang, "A CMOS balun with common ground and artificial dielectric compensation achieving 79.5% fractional bandwidth and < 2 phase imbalance," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 1319-1322, 2020.
doi:10.1109/IMS30576.2020.9223981

6. Guanella, G., "New method of impedance matching in radio-frequency circuits," The Brown Boveri Review, Vol. 31, 125-127, 1944.

7. Ruthroff, C. L., "Some broad-band transformers," Proceedings of the IRE, Vol. 47, No. 8, 1337-1342, 1959.
doi:10.1109/JRPROC.1959.287200

8. Mack, R. A. and J. Sevick, Sevick's Transmission Line Transformers: Theory and Practice, IET, 2014.
doi:10.1049/SBEW513E

9. Rotholz, E., "Transmission-line transformers," IEEE Transactions on Microwave Theory and Techniques, Vol. 29, No. 4, 327-331, 1981.
doi:10.1109/TMTT.1981.1130352

10. Chung, H.-Y., H.-K. Chiou, Y.-C. Hsu, T.-Y. Yang, and C.-L. Chang, "Design of step-down broadband and low-loss Ruthroff-type baluns using IPD technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 6, 967-974, 2014.
doi:10.1109/TCPMT.2014.2311662

11. Chiou, H.-K. and H.-Y. Chung, "2.5-7 GHz single balanced mixer with integrated Ruthroff-type balun in 0.18 μm CMOS technology," Electronics Letters, Vol. 49, No. 7, 474-475, 2013.
doi:10.1049/el.2012.4091

12. Gomez-Jimenez, P., P. Otero, and E. Marquez-Segura, "Analysis and design procedure of transmission-line transformers," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 163-171, 2008.
doi:10.1109/TMTT.2007.912246

13. Grebennikov, A., "Power combiners, impedance transformers and directional couplers," High Frequency Electronics, Vol. 6, No. 12, 20-38, 2007.

14. Trask, C., "Transmission line transformers: Theory design and applications," High Frequency Electronics, Vol. 4, 46-53, 2005.

15. Burasa, P., T. Djerafi, N. G. Constantin, K. Wu, and , "On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 3858-3868, 2017.
doi:10.1109/TAP.2017.2710215

16. Sobrany, R. F. and I. D. Robertson, "Ruthroff transmission line transformers using multilayer technology," 33rd European Microwave Conference Proceedings (IEEE Cat. No. 03EX723C), Vol. 2, 559-562, 2003.
doi:10.1109/EUMA.2003.341014

17. Sahan, N., M. E. Inal, S. Demir, and C. Toker, "High-power 20-100-MHz linear and efficient power-amplifier design," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 9, 2032-2039, 2008.
doi:10.1109/TMTT.2008.2002238

18. Liu, S.-P., "Planar transmission line transformer using coupled microstrip lines," 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192), Vol. 2, 789-792, 1998.

19. Huang, C.-H., T.-S. Horng, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, "Optimum design of transformer-type Marchand balun using scalable integrated passive device technology," IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 2, No. 8, 1370-1377, 2011.
doi:10.1109/TCPMT.2011.2171514

20. Liu, X., J. Zhou, Z. Deng, and X. Luo, "Compact wideband Marchand balun with amplitude and phase compensation shield," 2019 IEEE MTT-S International Microwave Symposium (IMS), 448-451, 2019.
doi:10.1109/MWSYM.2019.8700816

21. Ahn, H.-R. and M. M. Tentzeris, "A novel compact isolation circuit suitable for ultracompact and wideband Marchand baluns," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 2299-2303, 2019.
doi:10.1109/TCSII.2019.2960005

22. Wang, Y. and J.-C. Lee, "A miniaturized Marchand balun model with short-end and capacitive feeding," IEEE Access, Vol. 6, 26653-26659, 2018.
doi:10.1109/ACCESS.2018.2834948