Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-21
Simulation of Ultra Wideband Microstrip Antenna Using Epml-TLM
By
Progress In Electromagnetics Research B, Vol. 2, 115-124, 2008
Abstract
In this paper the simulation of ultra wideband microstrip antenna is considered. Because of the ultra wideband characteristics of this antenna, it is better to use time domain simulation methods. In this work we use three dimensional transmission line matrix method (3D-TLM) and EPML-TLM algorithm for modeling PML boundary condition directly applied to TLM algorithm. Finally simulation results of some kinds of this antenna (e.g., linear tapered slot antenna and modified planar inverted cone antenna) are presented and compared with measurements and some commercial software's output.
Citation
Mahdi Rajabi, Morteza Mohammadi, and Nader Komjani, "Simulation of Ultra Wideband Microstrip Antenna Using Epml-TLM," Progress In Electromagnetics Research B, Vol. 2, 115-124, 2008.
doi:10.2528/PIERB07110802
References

1. Hoefer, W. J. R., "The transmission-line matrix (TLM) method," Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh (ed.), Wiley, New York, 1989.

2. Christopoulos, C., "The transmission-line modeling method: TLM," IEEE/OUP on Electromagnetic Wave Theory, IEEE Press, Piscataway, NJ, 1995.

3. Ney, M. M. and S. Le Maguer, "Diakoptics: An efficient technique for EMC applications," Proc. Electromagnetic Compatibility, 339-342, Zurich, Switzerland, 1999.

4. Eswarappa, C. and W. J. R. Hoefer, "Implementation of Berenger absorbing boundary conditions in TLM by interfacing FDTD perfectly matched layers," Electron. Lett., Vol. 31, No. 15, 1264-1266, July 1995.
doi:10.1049/el:19950887

5. Pena, N. and M. M. Ney, "Absorbing-boundary conditions using perfectly matched layer (PML) technique for three-dimensional TLM simulations," IEEE Trans. Microwave Theory Tech., Vol. 45, 1749-1755, October 1997.
doi:10.1109/22.641722

6. Dubard, J. L. and D. Pompei, "Optimization of the PML efficiency in 3-D TLM method," IEEE Trans. on Microwave Theo. and Tech., Vol. 48, No. 7, July 2000.

7. Le Maguer, S., N. Pena, and M. M. Ney, "Matched absorbing medium techniques for full-wave TLM simulation of microwave and millimeter wave components," Ann. Telecommun., Vol. 53, No. 3-4, 115-129, Mar.-Apr. 1998.

8. Le Maguer, S. and M. M. Ney, "Extended PML-TLM node: An efficient approach for full wave analysis of open structures," Int. J. Numer. Model., Vol. 14, 129-144, 2001.
doi:10.1002/jnm.402

9. Suh, S.-Y., W. L. Stutzman, W. A. Davis, A. E. Waltho, K. W. Skeba, and J. LSchiffer, "A UWB antenna with a stop-band notch in the 5-GHz WLAN band," IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005.

10. Choi, J., K. Chung, and Y. Roh, "Parametric analysis of a band-rejection antenna for UWB application," Microwave and Optical Technology Letters, Vol. 47, No. 3, November 2005.
doi:10.1002/mop.21148

11. Choi, W., J. Jung, K. Chung, and J. Choi, "Compact microstrip-fed antenna with band-stop characteristic for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 47, No. 1, October 2005.
doi:10.1002/mop.21090

12. Lee, J., S. Park, and S. Lee, "Bow-tie wide-band monopole antenna with the novel impedance-matching technique," Microwave and Optical Technology Letters, Vol. 33, No. 6, June 2006.