Vol. 1
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-11-21
The Electrostatic Potential Associated to Interface Phonon Modes in Nitride Single Heterostructures
By
Progress In Electromagnetics Research Letters, Vol. 1, 27-33, 2008
Abstract
The electrostatic potential associated to the interface oscillation modes in nitride-based heterostructure is calculated with the use of a complete phenomenological electroelastic continuum approach for the long wave optical oscillations, and the Surface Green Function Matching technique. The crystalline symmetries of zincblende and - isotropically averaged - wurtzite are both considered in the sets of input bulk frequencies and dielectric constants.
Citation
Miguel Mora-Ramos, Rolando Perez-Alvarez, and Victor Velasco, "The Electrostatic Potential Associated to Interface Phonon Modes in Nitride Single Heterostructures," Progress In Electromagnetics Research Letters, Vol. 1, 27-33, 2008.
doi:10.2528/PIERL07111806
References

1. Lee, B. C., K. W. Kim, M. A. Stroscio, and M. Dutta, "Opticalphonon confinement and scattering in wurtzite heterostructures," Phys. Rev. B, Vol. 58, No. 8, 4860-4865, 1998.
doi:10.1103/PhysRevB.58.4860        Google Scholar

2. Shi, J.-J, "Interface optical phonon modes and electron-interfacephonon interactions in wurtzite GaN/AlN quantum wells," Phys. Rev. B, Vol. 68, No. 16, 165335(1)-165335(11), 2003.
doi:10.1103/PhysRevB.68.165335        Google Scholar

3. Shi, J.-J, X. L. Chu, and E. M. Goldys, "Propagating opticalphonon modes and their electron-phonon interactions in wurtzite GaN/AlxGa1-xN quantum wells," Phys. Rev. B, Vol. 70, No. 11, 115318(1)-115318(8), 2004.
doi:10.1103/PhysRevB.70.115318        Google Scholar

4. Li, L., D. Liu, and J. J. Shi, "Electron-quasi-confined-opticalphonon interactions in wurtzite GaN/AlN quantum wells," Eur. Phys. J. B, Vol. 44, No. 4, 401-413, 2005.
doi:10.1140/epjb/e2005-00139-x        Google Scholar

5. Mora-Ramos, M. E., J. Tutor, and V. R. Velasco, "Interfacephonon-limited two-dimensional mobility in AlGaN/GaN heterostructures," J. Appl. Phys., Vol. 100, No. 12, 123708(1)-123708(9), 2006.
doi:10.1063/1.2400508        Google Scholar

6. Trallero-Giner, C., F. Garcia-Moliner, V. R. Velasco, and M. Cardona, "Analysis of the phenomenological models for long wavelength polar optical modes in semiconductor layered systems," Phys. Rev. B, Vol. 45, No. 20, 11944-11948, 1992.
doi:10.1103/PhysRevB.45.11944        Google Scholar

7. Garcia-Moliner, F., "Long wave polar optical phonons in heterostructures," Phonons in Semiconductor Nanostructures: Proceedings of the NATOA dvanced Research Workshop, 1-12, J. P. Leburton, J. Pascual, and C. Sotomayor-Torres (eds.), Kluwer Academic Publishers 1993, St. Feliu De Guixols, Spain, September 1992.        Google Scholar

8. Chubykalo, A., V. R. Velasco, and F. Garcia-Moliner, "Polar optical phonons at semiconductor interfaces," Surf. Sci., Vol. 319, No. 1–2, 184-192, 1994.
doi:10.1016/0039-6028(94)90581-9        Google Scholar

9. Mora-Ramos, M. E. and D. A. Contreras-Solorio, "The polaron in a GaAs/AlAs quantum well," Physica B, Vol. 253, No. 3-4, 325-334, 1998.
doi:10.1016/S0921-4526(98)00292-0        Google Scholar

10. Davydov, V. Y., Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, "Phonon dispersion and Raman scattering in hexagonal GaN and AlN," Phys. Rev. B, Vol. 58, No. 19, 12899-12907, 1998.
doi:10.1103/PhysRevB.58.12899        Google Scholar

11. Zi, J., X. Wan, G. Wei, K. Zhang, and X. Xie, "Lattice dynamics of zinc-blende GaN and AIN: l. Bulk phonons," J. Phys.: Cond. Matt., Vol. 8, 6323-6328, 1996.
doi:10.1088/0953-8984/8/35/003        Google Scholar

12. Bechstedt, F. and H. Grille, "Lattice dynamics of ternary alloys," Phys. Stat. Sol. (B), Vol. 216, 761-768, 1999.
doi:10.1002/(SICI)1521-3951(199911)216:1<761::AID-PSSB761>3.0.CO;2-G        Google Scholar

13. Bechstedt, F., J. Furthmuller, and J.-M. Wagner, "Electronic and vibrational properties of group-III nitrides: Ab initio studies," Phys. Stat. Sol. (C), Vol. 0, 1732-1749, 2003.
doi:10.1002/pssc.200303131        Google Scholar

14. Santos, A. M., E. C. F. Silva, O. C. Noriega, H. W. L. Alves, J. L. A. Alves, and J. R. Leite, "Vibrational properties of cubic AlxGa1-xN and InxGa1-xN ternary alloys," Phys. Stat. Sol. (B), Vol. 232, 182-187, 2002.
doi:10.1002/1521-3951(200207)232:1<182::AID-PSSB182>3.0.CO;2-Q        Google Scholar

15. Bougrov, V., M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrikov, "GaN, AlN, InN, BN, SiC, SiGe," Poperties of Advanced Semiconductor Materials, M. E. Levinshtein, S. L. Rumiantsev, and M. S Shur (eds.), John Wiley, New York, 2001.        Google Scholar

16. Palmer, D. W., http://www.semiconductors.co.uk.