Vol. 2
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-30
Design of Cartesian Feedback RF Power Amplifier for L-Band Frequency Range
By
Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008
Abstract
A phase-alignment system is used fully integrate a power amplifier, Cartesian feedback linearization circuitry, and a phasealignment system. The phase-alignment system employs a new technique for offset-free analog multiplication that enables it to function without manual trimming. This paper demonstrates how the phase-alignment system improves the stability margins of the fully integrated Cartesian feedback system. The power amplifier itself, integrated on the same die, operates at 1 GHz and delivers a maximum of 30 dBm of output power into a 50-load. The class AB design for open loop and close loop power amplifier with Cartesian feedback, demonstrated a good linearity of 50 dBc and 80 dBc, respectively. The operating power is 2 W at 1000 MHz frequency.
Citation
Mandeep Singh, Anand Lokesh, Syed Idris Syed Hassan, mohd Mahmud, and Mohd Fadzil Ain, "Design of Cartesian Feedback RF Power Amplifier for L-Band Frequency Range," Progress In Electromagnetics Research B, Vol. 2, 207-222, 2008.
doi:10.2528/PIERB07111901
References

1. Albert, B. R., Introduction to Satellite Communications, 3rd Ed., Artech House Inc., 2002.

2. Coskun, A. H. and S. Demir, "A mathematical characterization and analysis of a feedforward circuit for CDMA applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 767-777, 2003.
doi:10.1109/TMTT.2003.808582

3. Park, J. K., D. H. Shin, J. N. Lee, and H. J. Eom, "A full-wave analysis of a coaxial waveguide slot bridge using the fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

4. Wu, C. and G.-X. Jiang, "Stabilization procedure for the time-domain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1507-1512, 2007.

5. Dawson, J. and T. Lee, "Automatic phase alignment for high bandwidth Cartesian feedback power amplifiers," IEEE Proceeding Radio and Wireless Conf., 71-74, 2000.

6. Makki, S. V., T. Z. Ershadi, and M. S. Abrishamian, "Determining the specific ground conductivity aided by the horizontal electric dipole antenna near the ground surface," Progress In Electromagnetics Research B, Vol. 1, 43-65, 2008.
doi:10.2528/PIERB07093003

7. Mallahzadeh, A. R., A. A. Dastranj, and H. R. Hassani, "A novel dual-polarized double-ridged horn antenna for wideband applications," Progress In Electromagnetics Research B, Vol. 1, 67-80, 2008.
doi:10.2528/PIERB07101602

8. Mohammadi, F. A. and M. C. E. Yagoub, "Electromagnetic model for microwave components of integrated circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802

9. Dawson, J. L. and T. H. Lee, "Automatic phase alignment for a fully integrated Cartesian feedback power amplifier system," IEEE Journal of Solid-State Circuits, Vol. 38, 2269-2279, 2003.
doi:10.1109/JSSC.2003.819090

10. Faulkner, M., D. Contos, and M. Briffa, "Performance of automatic phase adjustment using supply current minimization in a RF feedback lineariser," Proc. 8th IEEE Int. Symp. Personal, Indoor, and Mobile Radio Communications, 858-862, 1997.

11. Khan, S. N., J. Hu, J. Xiong, and S. He, "Circular fractal monopole antenna for low VSWR UWB applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903

12. Han, G. and E. Sanchez-Sinencio, "CMOS transconductance multipliers: A tutorial," IEEE Trans. Circuits Syst. II, Vol. 45, 1550-1563, 1998.

13. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Online, Vol. 3, No. 8, 1321-1325, 2007.
doi:10.2529/PIERS070416143017

14. Ma, H. and Q. Feng, "An improved design of feed-forward power amplifier," PIERS Online, Vol. 3, No. 4, 363-367, 2007.
doi:10.2529/PIERS060817033556

15. Huang, Q. and C. Menolfi, "A 200 nV offset 6:5 nV=pHz noise PSD 5.6 kHz chopper instrumentation amplifier in 1 μm digital CMOS," IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 362-363, 2001.

16. Sebak, S., L. Zhu, V. K. Devabhaktuni, and C. Wang, "A CRLH microstrip delay line for high-speed electronic circuits," PIERS Online, Vol. 3, No. 3, 259-263, 2007.
doi:10.2529/PIERS061007235152

17. Zhao, J., J. Zhou, N. Xie, J. Zhai, and L. Zhang, "Error analysis and compensation algorithm for digital predistortion systems," PIERS Online, Vol. 2, No. 6, 702-705, 2006.
doi:10.2529/PIERS060901232412

18. Huh, J. W., I. S. Chang, and C. D. Kim, "Spectrum monitored adaptive feedforward linearization," Microwave Journal, Vol. 44, 160-166, 2001.

19. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Proceedings in Prague, Prague, Czech Republic, August 27-30 2007.

20. Presa, J., J. Legarda, H. Solar, J. Melendev, A. Munoz, and A. G. Alonso, "An adaptive feedforward amplifier for UMTS downlink transmitters," 15th IEEE Int. Personal, Indoor and Mobile Radio Communications System, 2005.

21. Liao, S.-S., S.-Y. Yuan, H.-N. Lin, P.-T. Sun, and K.-C. Chuang, "Parallel-coupled microstrip filter using stepped-impedance and over-coupled end stages for suppression of spurious responses," PIERS 2007 in Beijing Proceedings, Beijing, China, March 26-30 2007.

22. Youngoo, Y., C. Jeonghyeon, S. Bumjee, and K. Bumman, "A microwave doherty amplifier employing envelope tracking technique for high efficiency and linearity," IEEE Microwave and Wireless Components Letters, Vol. 13, 2003.