Vol. 2
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-15
Multiple Cavity Modeling of a Feed Network for Two Dimensional Phased Array Application
By
Progress In Electromagnetics Research Letters, Vol. 2, 135-140, 2008
Abstract
In this paper a method of moment based analysis of an H-plane 1:3p ower divider has been presented using Multi Cavity Modeling Technique (MCMT) in transmitting mode. Finally attempt has been made to improve the frequency response characteristic of the above mentioned waveguide circuit using a sorting post to diversify the power equally in all the ports. Codes have been written for analyzing the frequency response characteristic of the structure, mentioned above. Numerical data have been compared with the data obtained with laboratory measurement, and CST Microwave Studio simulation. In the present analysis global basis function has been used. The existence of cross polarization components of the field inside the waveguide structures if exists, have also been considered to obtain an accurate result. The proposed power divider has good agreement with the theoretical; CST microwave studio simulated data and measured data. The power divider can be used in the input at 9.8 GHz frequency band, over 800 MHz.
Citation
Debendra Kumar Panda, and Ajay Chakraborty, "Multiple Cavity Modeling of a Feed Network for Two Dimensional Phased Array Application," Progress In Electromagnetics Research Letters, Vol. 2, 135-140, 2008.
doi:10.2528/PIERL07122504
References

1. Takeda, F., O. Ishida, and Y. Isoda, "Waveguide power divider using metallic septum with resistive coupling slot," Microwave Symposium Digest, MTT-S International, Vol. 82, No. 1, 527-528, June 1982.
doi:10.1109/MWSYM.1982.1130780

2. Soroka, A. S., A. O. Silin, V. I. Tkachenko, and I. S. Tsakanyan, "Simulation of multichannel waveguide power dividers," MSMW’98 Symposium Proceedings, 634-635, Kharkov, Ukraine, September 15–17, 1998.

3. Chen, S., "A radial waveguide power divider for Ka band phase array antenna," 3rd International Conference on Microwave and Millimeter Wave Technology, 948-951, 2002.
doi:10.1109/ICMMT.2002.1187859

4. Gardner, P. and B. H. Ong, "Mode matching design of threeway waveguide power dividers," IEE Colloquium on Advances in Passive Microwave Components, 5/1-5/4, May 22, 1997.

5. Das, S. and A. Chakraborty, "A novel modeling technique to solve a class of rectangular waveguide based circuits and radiators," Progress In Electromagnetic Research, Vol. 61, 231-252, May 2006.
doi:10.2528/PIER06010302

6. Das, S. and A. Chakrabarty, "Analysis of waveguide based power divider using multiple cavity modeling technique and performance improvement," IRSI-2005, Bangalore, India, 2005.

7. Das, S., A. Chakrabarty, and A. Chakraborty, "Analysis of multiport waveguide power divider/combiner for phased array application," NCC 2007, IIT Kanpur, India, 2007.

8. Eleftheriades, G., A. S. Omar, and L. P. B. Katehi, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 10, 1896-1903, October 1994.
doi:10.1109/22.320771

9. Harrington, R. F., Field Computation by Moment Methods, Roger E. Krieger Publishing Company, USA, 1968.

10. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Company, New York, 1961.

11. Collins, R. E., Field Theory of Guided Waves, IEEE Press, 1991.

12. Das, S., Analysis of rectangular waveguide based passive devices and antennas using multiple cavity modeling technique, Ph.D. Dissertation, Department of E & ECE, I.I.T Kharagpur, India, 2007.