Vol. 6
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-04
Influence of Motion on the Edge-Diffraction
By
Progress In Electromagnetics Research B, Vol. 6, 153-168, 2008
Abstract
The aim of the present paper is to reveal the effect of motion on the scattering by an edge. To this end one considers a canonical structure formed by a perfectly conducting half-plane illuminated by a time-harmonic and uniformly moving infinitely long line source. The relevant line source is located parallel to the edge and moves with a constant velocity which is also parallel to the half-plane. This is the dual of a previously studied problem in which the halfplane was moving uniformly. The present problem is first reduced into a Wiener-Hopf problem in the sense of distribution and then solved by an ad-hoc method. The edge-diffracted field is discussed in detail.
Citation
Mithat Idemen, and Ali Alkumru, "Influence of Motion on the Edge-Diffraction," Progress In Electromagnetics Research B, Vol. 6, 153-168, 2008.
doi:10.2528/PIERB08031210
References

1. Pauli, W., Theory of Relativity, Pergamon Press, 1958.

2. Yeh, C., "Reflection and transmission of electromagnetic waves by moving dielectric medium," J. of Appl. Phys., Vol. 36, 3513-3517, 1965.
doi:10.1063/1.1703029        Google Scholar

3. Lee, S. W. and Y. T. Lo, "Reflection and transmission of electromagnetic waves by moving uniaxially anisotropic medium," J. of Appl. Phys., Vol. 8, 870-875, 1967.
doi:10.1063/1.1709427        Google Scholar

4. Van Bladel, J., Relativity and Engineering, Springer-Verlag, 1984.

5. Censor, D., "Broadband spatiotemporal differential-operator representations for velocity depending scattering," Progress In Electromagnetics Research, Vol. 58, 51-70, 2006.
doi:10.2528/PIER05052502        Google Scholar

6. Lee, S. W. and R. Mittra, "Scattering of electromagnetic waves by a moving cylinder in free space," Canadian J. of Phys., Vol. 45, 2999-3007, 1967.        Google Scholar

7. Censor, D., "Scattering of electromagnetic waves by a cylinder moving along its axis," Microwave Theory and Techn., Vol. 17, 154-158, 1969.
doi:10.1109/TMTT.1969.1126914        Google Scholar

8. De Zutter, D. and J. Van Bladel, "Scattering by cylinders in translational motion," IEE Microwaves, Optics and Antennas, Vol. 1, 192-196, 1977.        Google Scholar

9. Borghi, R., F. Gori, M. Santersiero, F. Frezza, and G. Schettini, "Plane wave scattering by conducting cylindernear a plane surface: A cylindrical wave approach," J. Optical Soc. Amer. - A, Vol. 13, 483-493, 1996.        Google Scholar

10. Idemen, M. and A. Alkumru, "Influence of the velocity on the energy patterns of moving scatterers," Journal of Electromagnetic Waves and Applications, Vol. 18, 3-22, 2004.
doi:10.1163/156939304322749580        Google Scholar

11. Tsandoulas, G. N., "Low-frequency diffraction by mowing conducting strips," J. Opt. Soc. Amer., Vol. 59, 1357-1360, 1969.
doi:10.1109/TAP.1972.1140331        Google Scholar

12. Hunter, J. D., "High-frequency diffraction by a moving conducting strip," IEEE Trans. Antennas and Propagat., Vol. 20, 792-794, 1972.
doi:10.1029/RS006i006p00655        Google Scholar

13. Lang, K. C., "Diffraction of electromagnetic waves by a moving impedance wedge," Radio Sci., Vol. 6, 655-663, 1971.
doi:10.1163/156939302X01182        Google Scholar

14. De Cupis, P., P. Burghignoli, G. Gerosa, and M. Marziale, "Electromagnetic wave scattering by a perfectly conducting wedge in uniform translational motion," Journal of Electromagnetic Waves and Applications, Vol. 16, 345-364, 2002.        Google Scholar

15. Tsandoulas, G. N., "Electromagnetic diffraction by a moving wedge," Radio Sci., Vol. 3, 887-893, 1968.
doi:10.1109/TAP.2006.884305        Google Scholar

16. Idemen, M. and A. Alkumru, "Relativistic scattering of a plane-wave by a uniformly moving half-plane," IEEE Trans. Antennas and Propagat., Vol. 54, 3429-3440, 2006.        Google Scholar

17. Ott, R. H. and G. Hufford, "Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave," Radio Sci., Vol. 3, 857-861, 1968.
doi:10.1029/RS007i002p00331        Google Scholar

18. Censor, D., "Scattering in velocity-dependent systems," Radio Sci., Vol. 7, 331-337, 1972.
doi:10.1163/156939300X00969        Google Scholar

19. De Cupis, P., G. Gerosa, and G. Schettini, "Electromagnetic scattering by an object in relativistic translational motion," Journal of Electromagnetic Waves and Applications, Vol. 14, 1037-1062, 2000.
doi:10.1063/1.1665539        Google Scholar

20. Twerski, V., "Relativistic scattering of electromagnetic waves by moving obstacles," J. Math. Phys., Vol. 12, 2328-2341, 1971.
doi:10.1016/0022-460X(72)90599-8        Google Scholar

21. Censor, D., "Scattering by time-varying obstacles," J. Sound Vibration, Vol. 25, 101-110, 1972.
doi:10.1063/1.524853        Google Scholar

22. Michielsen, B. L., G. C. Herman, A. T. de Hoop, and D. De Zutter, "Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translation motion," J. Math. Phys., Vol. 22, 2716-2722, 1981.
doi:10.1109/TAP.1986.1143938        Google Scholar

23. Tzikas, A. A., D. P. Chrissoulidis, and E. E. Kriezis, "Relativistic bistatic scattering by a uniformly moving random rough surface," IEEE Trans. Antennas and Propagat., Vol. 34, 1046-1052, 1986.
doi:10.1007/BF00385766        Google Scholar

24. De Zutter, D., "Fourier analysis of the signal scattered by objects in translational motion, Part I and II," Appl.Sci. Res., Vol. 36, 241-269, 1980.        Google Scholar

25. Rabinovich, V. S. and I. Miranda, "Non uniformly moving source in electromagnetic waveguides," Proceedings of Day on Diffraction, 193-202, 2003.
doi:10.1143/JJAP.45.4847        Google Scholar

26. Shimura, T., H. Ochi, and Y. Watanabe, "Time-reversal communication with moving source-receiver in shallow water," Jap. J. Appl. Phys., Vol. 45, 4847-4852, 2006.        Google Scholar

27. Moeller, C., The Theory of Relativity, 2nd Ed., Oxford University Press, 1972.

28. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons Inc., 1990.

29. Idemen, M., Confluent Edge Conditions for the Electromagnetic Wave at the Edge of a Wedge Bounded by Material Sheets, Wave Motion, Vol. 2, No. 1, 37-55, 2000.

30. Noble, B., Methods Based on the Wiener-Hopf Techniques, Pergamon, 1958.

31. Gel’fand, I. M. and G. E. Shilov, Les Distributions, Dunod, 1962.

32. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 5th Ed., Academic Press, 1994.