Vol. 8
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-06-09
Resistivity Tensor Probability Tomography
By
Progress In Electromagnetics Research B, Vol. 8, 129-146, 2008
Abstract
The probability tomography approach developed for the scalar resistivity method is here extended to the 2D tensorial apparent resistivity acquisition mode. The rotational invariant derived from the trace of the apparent resistivity tensor is considered, since it gives on the datum plane anomalies confined above the buried objects. Firstly, a departure function is introduced as the difference between the tensorial invariant measured over the real structure and that computed for a reference uniform structure. Secondly, a resistivity anomaly occurrence probability (RAOP) function is defined as a normalised crosscorrelation involving the experimental departure function and a scanning function derived analytically using the Frechet derivative of the electric potential for the reference uniform structure. The RAOP function can be calculated in each cell of a 3D grid filling the investigated volume, and the resulting values can then be contoured in order to obtain the 3D tomographic image. Each non-vanishing value of the RAOP function is interpreted as the probability which a resistivity departure from the reference resistivity obtain in a cell as responsible of the observed tensorial apparent resistivity dataset on the datum plane. A synthetic case shows that the highest RAOP values correctly indicate the position of the buried objects and a very high spacial resolution can be obtained even for adjacent objects with opposite resistivity contrasts with respect to the resistivity of the hosting matrix. Finally, an experimental field case dedicated to an archaeological application of the resistivity tensor method is presented as a proof of the high resolution power of the probability tomography imaging, even when the data are collected in noisy open field conditions.
Citation
Paolo Mauriello, and Domenico Patella, "Resistivity Tensor Probability Tomography," Progress In Electromagnetics Research B, Vol. 8, 129-146, 2008.
doi:10.2528/PIERB08051604
References

1. Bibby, H. M., "The apparent resistivity tensor," Geophysics, Vol. 42, 1258-1261, 1977.
doi:10.1190/1.1440791

2. Bibby, H. M., "Analysis of multiple-source bipole-quadripole resistivity surveys using the apparent resistivity tensor," Geophysics, Vol. 51, 972-983, 1986.
doi:10.1190/1.1442155

3. Bibby, H. M. and G.W. Hohmann, "Three-dimensional interpretation of multiple-source bipole-dipole resistivity data using the apparent resistivity tensor," Geophysical Prospecting, Vol. 41, 697-723, 1993.
doi:10.1111/j.1365-2478.1993.tb00879.x

4. Cammarano, F., P. Mauriello, D. Patella, and S. Piro, "Application of geophysical methods to archaeological prospecting," Science and Technology for Cultural Heritage, Vol. 6, 151-173, 1997.

5. Cammarano, F., P. Mauriello, D. Patella, and S. Piro, "Integrated geophysical methods for archaeological prospecting," Volcanism and Archaeology in Mediterranean Area , M. Cortini and B. De Vivo (eds.), Research Signpost, Trivandrum, 1997.

6. Cammarano, F., P. Mauriello, D. Patella, S. Piro, F. Rosso, and L. Versino, "Integration of high resolution geophysical methods. Detection of shallow depth bodies of archaeological interest ," Annali di Geofisica, Vol. 41, 359-368, 1998.

7. Cammarano, F., B. Di Fiore, D. Patella, and P. Mauriello, "Examples of application of electrical tomographies and radar profiling to cultural heritage," Annali di Geofisica, Vol. 43, 309-324, 2000.

8. Cammarano, F., P. Mauriello, D. Patella, and S. Piro, "Application of the self-potential method to the study of shallow cavities of archaeological interest," Non Destructive Techniques Applied to Landscape Archaeology, M. Pasquinucci and F. Trement (eds.), Oxbow Books, Oxford, 2000.

9. Capineri, L., D. Daniels, P. Falorni, O. Lopera, and C. Windsor, "Ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters , Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

10. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi, "Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting," Journal of Volcanology and Geothermal Research, Vol. 82, 219-238, 1998.
doi:10.1016/S0377-0273(97)00066-8

11. Gnedenko, B. V., Kurs Teorii Verojatnostej, Mir, Moscow, Published in Italian as Teoria della Probabilita, Editori Riuniti, Rome, 1979.

12. Iuliano, T., P. Mauriello, and D. Patella, "A probability tomography approach to the analysis of potential field data in the Campi Flegrei caldera (Italy)," Annali di Geofisica, Vol. 44, 403-420, 2001.

13. Iuliano, T., P. Mauriello, and D. Patella, "Advanced magnetic visualization of the Mt. Vesuvius shallow plumbing system by probability tomography," Annals of Geophysics, Vol. 45, 431-438, 2002.

14. Iuliano, T., P. Mauriello, and D. Patella, "Looking inside Mount Vesuvius by potential fields integrated geophysical tomographies ," Journal of Volcanology and Geothermal Research, Vol. 113, 363-378, 2002.
doi:10.1016/S0377-0273(01)00271-2

15. Lapenna, V., D. Patella, and S. Piscitelli, "Tomographic analysis of self-potential data in a seismic area of southern Italy," Annali di Geofisica, Vol. 43, 361-374, 2000.

16. Loke, M. H. and R. D. Barker, "Least-squares deconvolution of apparent resistivity pseudosections," Geophysics, Vol. 60, 1682-1690, 1995.
doi:10.1190/1.1443900

17. Makki, S. V., T. Z. Ershadi, and M. S. Abrishamian, "Determining the specific ground conductivity aided by the horizontal electric dipole antenna near the ground surface ," Progress In Electromagnetics Research B, Vol. 1, 43-65, 2008.
doi:10.2528/PIERB07093003

18. Mauriello, P. and D. Patella, "Resistivity anomaly imaging by probability tomography," Geophysical Prospecting, Vol. 47, 411-429, 1999.
doi:10.1046/j.1365-2478.1999.00137.x

19. Mauriello, P. and D. Patella, "Principles of ground surface physical tomography for natural source electromagnetic induction fields," Geophysics, Vol. 64, 1403-1417, 1999.
doi:10.1190/1.1444645

20. Mauriello, P. and D. Patella, "A physical pattern recognition approach for 2D electromagnetic induction studies," Annali di Geofisica, Vol. 43, 343-360, 2000.

21. Mauriello, P. and D. Patella, "Gravity probability tomography: a new tool for buried mass distribution imaging," Geophysical Prospecting, Vol. 49, 1-20, 2001.
doi:10.1046/j.1365-2478.2001.00234.x

22. Mauriello, P. and D. Patella, "Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses," Geophysics, Vol. 66, 1431-1437, 2001.
doi:10.1190/1.1487088

23. Mauriello, P. and D. Patella, "Localization of magnetic sources underground by a data adaptive tomographic scanner,", arXiv:physics/0511192v2, 2005.
doi:10.1190/1.1487088

24. Mauriello, P. and D. Patella, "Introduction to tensorial resistivity probability tomography,", arXiv:physics/0512147v1, 2005.
doi:10.1190/1.1487088

25. Mauriello, P. and D. Patella, "Localization of magnetic sources underground by a probability tomography approach," Progress In Electromagnetics Research M, Vol. 3, 27-56, 2008.
doi:10.2528/PIERM08050504

26. Mauriello, P., D. Monna, and D. Patella, "3D geoelectric tomography and archaeological applications," Geophysical Prospecting, Vol. 46, 543-570, 1998.

27. Mauriello, P., D. Patella, Z. Petrillo, A. Siniscalchi, T. Iuliano, and C. Del Negro, "A geophysical study of the Mount Etna volcanic area,", Mt.Etna: Volcano Laboratory, A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, and S. Falsaperla (eds.), American Geophysical Union, Geophysical Monograph Series, 143, 2004.

28. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface ," J. of Electromagn. Waves and Appl., Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318

29. Park, S. K. and G. P. Van, "Inversion of pole-pole data for 3D resistivity structure beneath arrays of electrodes," Geophysics, Vol. 56, 951-960, 1991.
doi:10.1190/1.1443128

30. Patella, D., "Introduction to ground surface self-potential tomography," Geophysical Prospecting, Vol. 45, 653-681, 1997.
doi:10.1046/j.1365-2478.1997.430277.x

31. Patella, D., "Self-potential global tomography including topographic effects," Geophysical Prospecting, Vol. 45, 843-863, 1997.
doi:10.1046/j.1365-2478.1997.570296.x

32. Patella, D. and P. Mauriello, "The geophysical contribution to the safeguard of historical sites in active volcanic areas. The Vesuvius case-history," Journal of Applied Geophysics, Vol. 41, 241-258, 1999.
doi:10.1016/S0926-9851(98)00045-7

33. Ra, J.-W., H.-K. Choi, and J.-S. Kim, "Two-and-half dimensional reconstruction of buried tunnel and pipes from cross-borehole and reflection measurements by using a genetic and Levenburg-Marquardt hybrid algorithm," J. of Electrom. Waves and Appl., Vol. 17, No. 2, 233-251, 2003.
doi:10.1163/156939303322235806

34. Santoro, P., "Colle del Forno, loc. Montelibretti (Roma). Relazione di scavo sulle campagne 1971–1974 nella necropoli," Atti dell'Accademia Nazionale dei Lincei, Vol. 31, 211-298, 1977.

35. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. of Electrom. Waves and Appl., Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

36. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

37. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," J. of Electrom. Waves and Appl., Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704

38. Verma, S. K. and S. P. Sharma, "Resolution of thin layers using joint-inversion of electromagnetic and direct current resistivity sounding data," J. of Electrom. Waves and Appl., Vol. 7, No. 3, 443-479, 1993.
doi:10.1163/156939393X00741

39. Wait, J. R., "Electromagnetic response of an anisotropic halfspace model when the medium striations are tilted relative to the vertical ," J. of Electrom. Waves and Appl., Vol. 10, No. 6, 871-881, 1996.
doi:10.1163/156939396X00838