Vol. 9
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-08
A Novel Dualband Frequency Selective Surface with Periodic Cell Perturbation
By
Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008
Abstract
A novel dualband frequency selective surface (FSS) with both a dielectric substrate and superstrate constructed by double-fourlegged loaded slots (DFLLSs) is investigated, in which each periodic cell consists of two neighboring DFLLSs with different dimensions, its resonant frequencies occur at 183 GHz and 220 GHz. Good selectivity performance can be easily achieved both in lower passband and higher passband by tuning the dimensions of the DFLLSs. Besides, the passbands are mainly determined by the neighboring perturb cells and can be designed independently. According to the explicit physical concept and some formulas, the design process become straightforward and simple. Its frequency performance is obtained by using numerical simulation software CST based on finite difference time domain method (FDTD). The simulated results show the good stability of the resonant frequencies and bandwidths at different polarization states and various incident angles.
Citation
Chao Guo, Hou-Jun Sun, and Xin Lv, "A Novel Dualband Frequency Selective Surface with Periodic Cell Perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, 2000.

2. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces-a review," IEEE Proc., Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

3. Ma, D. and W.-X. Zhang, "Mechanically tunable frequency selective surface with square-loop-slot elements," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2267-2276, 2007.
doi:10.1163/156939307783134407

4. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multiplayered frequency selective surfaces with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803

5. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

6. Tang, W., X. He, T. Pan, and Y. L. Chow, "Synthetic asymptote formulas of equivalent circuit components of square spiral inductors," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 215-226, 2006.
doi:10.1163/156939306775777206

7. Gu, Y.-Y., W.-X. Zhang, and Z.-C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147

8. Wu, C. and G.-X. Jiang, "Stabilization procedure for the timedomain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1507-1512, 2007.

9. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301

10. Ho, M., "Scattering of electromagnetic waves from vibrating perfect surfaces: Simulation using relativistic boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 425-433, 2006.
doi:10.1163/156939306776117108

11. Hosseini, M., A. Pirhadi, and M. Hakkak, "Design of a nonuniform high impedance surface for a low profile antenna," Journal of ElectroMagnetics Waves and Applications, Vol. 20, No. 11, 1455-1464, 2006.
doi:10.1163/156939306779274291

12. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

13. Munk, B., R. Kouyoumjian, L. Peters, and Jr., "Reflection properties of periodic surfaces of loaded dipoles," IEEE Trans. Antennas Propag., Vol. 19, 612-617, Sept. 1971.
doi:10.1109/TAP.1971.1139995

14. Wu, T. K., "Four-band frequency selective surface with double square loop patch elements," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1659-1663, 1994.
doi:10.1109/8.362804

15. Wu, T. K. and S. W. Lee, "Multiband frequency surface with multiring patch elements," IEEE Trans. Antennas Propag., Vol. 42, No. 11, 1484-1490, 1994.
doi:10.1109/8.362790

16. Huang, J., T. K.Wu, and S. W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

17. Luo, G. Q., W. Hong, Z. C. Hao, B. Liu, W. D. Li, J. X. Chen, H. X. Zhou, and K. Wu, "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4035-4043, 2005.
doi:10.1109/TAP.2005.860010

18. Romeu, J. and Y. Rahamat-Samii, "Fractal FSS: A novel dualband frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

19. Guo, C., H. J. Sun, and X. Lu, "Dualband frequency selective surface with double-four-legged loaded slots elements," Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. International Conference, Vol. 1, 297-300, April 21-24, 2008.

20. Bossard, J. A., D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE Trans. Atennas Propag., Vol. 54, No. 4, 1265-1276, Apr. 2006.
doi:10.1109/TAP.2006.872583