Vol. 11
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-12-31
Efficient Transmission Line Modeling Sensitivity Analysis Exploiting Rubber Cells
By
Progress In Electromagnetics Research B, Vol. 11, 223-243, 2009
Abstract
The adjoint variable method is applied for the first time to perform sensitivity analysis with transmission line modelingexploiting rubber cells. Rubber cells allow for the conformal modelingof off-grid boundaries in the transmission line modeling computational domain usingmo dified tensor properties. The scatteringmatrix of the rubber cell is analytically dependent on the dimensions of the modeled discontinuities. Usingthis property, an exact adjoint system is derived. The original and adjoint systems supply the necessary field information for the rubber cell based sensitivity calculations. Our technique is illustrated through sensitivity analysis of waveguide filters. The estimated sensitivities are used for fast gradient-based optimization and tolerance analysis.
Citation
Peter A. W. Basl, Mohamed H. Bakr, and Natalia K. Nikolova, "Efficient Transmission Line Modeling Sensitivity Analysis Exploiting Rubber Cells," Progress In Electromagnetics Research B, Vol. 11, 223-243, 2009.
doi:10.2528/PIERB08111502
References

1. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 299-302, Jun. 2003.

2. Bakr, M. H. and N. K. Georgieva, "An adjoint variable method for frequency domain TLM problems with conductingb oundaries," IEEE Microwave & Wireless Comp. Letters, Vol. 13, 408-410, Nov. 2003.
doi:10.1109/LMWC.2003.811665

3. Chung, Y. S., C. Cheon, I. H. Park, and S. Y. Hahn, "Optimal design methods for microwave devices using time domain method and design sensitivity analysis-part II: FDTD case," IEEE Trans. Microwave Theory and Tech., Vol. 37, 3255-3295, Sep. 2001.

4. Swillam, M. A., M. H. Bakr, and X. Li, "Efficient adjoint sensitivity analysis exploiting the FD-BPM," J. Lightwave Technology, Vol. 25, 1861-1869, Jul. 2007.
doi:10.1109/JLT.2007.899171

5. Shen, G., H. W. W. Tam, N. K. Nikolova, and M. H. Bakr, "Adjoint sensitivity technique for FDTD methods on structured grids," IEEE Int. Symp. Antennas & Propagation, 746-749, 2003.

6. Swillam, M. A., M. H. Bakr, and X. Li, "Full wave sebsitivity analysis of guided wave structures using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2135-2145, 2008.

7. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time-domain transmission-line modeling with fixed structured grids," IEEE Trans. Microwave Theory and Tech., Vol. 52, 554-559, Feb. 2004.
doi:10.1109/TMTT.2003.821908

8. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time domain TLM with wideband Johns matrix boundaries," IEEE Trans. Microwave Theory and Tech., Vol. 52, 678-685, Feb. 2004.
doi:10.1109/TMTT.2003.822034

9. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Time-domain sensitivity analysis of planar structures using first-order one-way wave equation boundaries," Int. Journal. of Numerical Modelling: Electronic Networks, Devices and Fields, to be published.

10. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient estimation of sensitivities in TLM with dielectric discontinuities," IEEE Microwave & Wireless Comp. Letters, Vol. 15, 89-91, Feb. 2005.
doi:10.1109/LMWC.2004.842829

11. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient sensitivity analysis of lossy discontinuities using time-domain TLM," Antem/URSI 2006 Conference Proc., 613-616, Jul. 2006.

12. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "An AVM technique for 3-D TLM with symmetric condensed nodes," IEEE Microwave & Wireless Comp. Letters, Vol. 15, 618-620, Oct. 2005.
doi:10.1109/LMWC.2005.856696

13. Johns, P. B., "Symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory and Tech., Vol. 35, 370-377, Feb. 1987.
doi:10.1109/TMTT.1987.1133658

14. Bakr, M. H. and N. K. Nikolova, "Efficient estimation of adjointvariable S-parameter sensitivities with time domain TLM," Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, No. 2, 171-187, Mar. 2005.
doi:10.1002/jnm.571

15. Bakr, M. H., N. K. Nikolova, and P. A. W. Basl, "Self-adjoint S-parameter sensitivities for lossless homogeneous TLM problems," Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 441-455, Nov. 2005.
doi:10.1002/jnm.590

16. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Theory of selfadjoint S-parameter sensitivities for lossless nonhomogeneous transmission-line modelingproblems," IET Proc. Microwaves, Antennas & Propagation, to be published.

17. Scaramuzza, R. A. and A. J. Lowery, "Hybrid symmetrical condensed node for the TLM method," Electronics Letters, Vol. 26, 1947-1949, Nov. 1990.
doi:10.1049/el:19901260

18. Herring, J. L. and C. Christopoulos, "Multigrid transmission-line modeling method for solving electromagnetic field problems," Electronics Letters, Vol. 27, 1794-1795, Sep. 1991.
doi:10.1049/el:19911115

19. German, F. G., "Infinitesimally adjustable boundaries in symmetrical condensed node TLM simulation," Applied Electromagnetics Symp. Dig., 482-490, 1993.

20. Muller, U., A. Beyer, and W. J. R. Hoefer, "Moving boundaries in 2-D and 3-D TLM simulations realized by recursive formulas," IEEE Trans. Microwave Thoery and Tech., Vol. 40, 2267-2271, Dec. 1992.
doi:10.1109/22.179889

21. Gwarek, W. K., "Analysis of an arbitrarily-shaped planar circuit a time-domain approach," IEEE Trans. Microwave Thoery and Tech., Vol. 33, 1067-1072, Oct. 1985.
doi:10.1109/TMTT.1985.1133170

22. Huilian, D., S. Poman, and W. J. R. Hoefer, "Cells with tensor properties for conformal TLM boundary modeling," 2006 IEEE MTT-S Int. Microwave Symp., Vol. 11, 157-160, 2006.

23. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient transmission line modeling sensitivity analysis exploiting rubber cells," IEEE MTT-S Conference Proc., 53-56, June 2008.

24. Mathworks, Matlab, “R2007,” ed., www.mathworks.com, 2007.

24. Ansoft Corporation, “HFSS,” 9.2.1 ed., www.ansoft.com, 2004.

26. Beneat, J., "Design of high frequency filters for data transmission & evanescent mode waveguide structures," PhD thesis, 1993.

27. μWave Wizard ver. 5.6,2006, Mician, Bremen, Germany, www.mician.com.