Vol. 11
Latest Volume
All Volumes
PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-12-30
Reconfigurable Yagi-Uda Substrate for RCS Reduction of Patch Antenna
By
Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009
Abstract
In this paper, a new Yagi-Uda substrate is proposed to obtain radar cross section (RCS) reduction. The Yagi-Uda substrate on which three kinds of metal microstrip lines are etched is put directly on the top of a patch antenna and can reduce RCS sharply by steering the direction of reflecting wave at resonant frequencies. Using a reconfiguration technique, the antenna can radiate without the substrate's effects. When the antenna does not need to work, the Yagi-Uda substrate works to reduce the RCS of the antenna. Besides, the resonant frequencies can be shifted by reconfiguring the Yagi-Uda substrate, so the RCS can be reduced in a broad frequency band.
Citation
Shu-Chen Zhao Bing-Zhong Wang Wei Shao , "Reconfigurable Yagi-Uda Substrate for RCS Reduction of Patch Antenna," Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009.
doi:10.2528/PIERB08120101
http://www.jpier.org/PIERB/pier.php?paper=08120101
References

1. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 27-40, 2006.
doi:10.1163/156939306775777323

2. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electronics Letter, Vol. 28, No. 25, 2322-2323, 1992.

3. Jackson, D. R., "The RCS of a rectangular microstrip patch in a substrate-superstrate geometry," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 2-8, 1990.
doi:10.1109/8.43583

4. Wilsen, C. B., et al., "The RCS reduction of microstrip patch antennas," Antennas and Propagation Tenth International Conference, No. 1, 174-177, 1997.

5. Zhao, S. C., B. Z. Wang, and Q. Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002

6. Pozar, D. M., "Radar cross-section of microstrip antenna on normally biased ferrite substrate," Electronics Letters, Vol. 25, No. 16, 1079-1080, 1989.
doi:10.1049/el:19890722

7. Yang, H. Y., J. A. Castaneda, and N. G. Alexopoulos, "Multifunctional antennas with low RCS," IEEE 1992 Antennas and Propagat. Symp., No. 4, 2240-2243, 1992.
doi:10.1109/APS.1992.221416

8. Harackiewicz, F. J., "Plane wave scattering from infinite microstrip arrays on ferrite substrates," IEEE 1990 Antennas and Propagat. Symp., No. 1, 417-420, 1990.

9. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992.
doi:10.1109/75.134353

10. Collardey, S., et al., "Use of electromagnetic band-gap materials for RCS reduction," Microwave and Optical Technology Letters, Vol. 44, No. 6, 546-550, 2005.
doi:10.1002/mop.20693

11. Chambers, B. and A. Tennant, "General analysis of the phase-switched screen, Part 1: The single layer case," Radar Sonar and Navigation, Vol. 149, No. 5, 243-247, 2002.
doi:10.1049/ip-rsn:20020534

12. Tennant, A. and B. Chambers, "Experimental phase modulating planar screen," Electronics Letters, Vol. 34, No. 11, 1143-1144, 1998.
doi:10.1049/el:19980803

13. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

14. Tennant, A. and B. Chambers, "Adaptive radar absorbing structure with PIN diode controlled active frequency elective surface," Smart Materials and Structures, No. 13, 122-125, 2004.
doi:10.1088/0964-1726/13/1/013

15. Tennant, A. and B. Chambers, "Controlled scattering from PEC surface using PSS boundary," Electronics Letters, Vol. 38, No. 15, 780-781, 2002.
doi:10.1049/el:20020563

16. Tennant, A. and B. Chambers, "RCS reduction of spiral patch antenna using a PSS boundary," Radar Sonar and Navigation, Vol. 153, No. 4, 248-252, 2005.
doi:10.1049/ip-rsn:20045048

17. Izadpanah, H., B. Warneke, R. Loo, and G. Tangonan, "Reconfigurable low power, linght weight wireless system based on the RF MEM switches," Technologies for Wireless Applications, Digest. 1999, IEEE MTT-S Symposium, 175-180, 1999.
doi:10.1109/MTTTWA.1999.755158

18. James, C. M., P. K. Morris, M. L. Lisa, N. P. Lon, T. L. Fountain, and H. Paul, "Switched fragmented aperture antennas," Antennas and Propagation Society International Sym. IEEE, Vol. 1, 310-313, 2002.