School of Information and Electronics Engineering
Xi'an Jiaotong University
China
Homepage1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
3. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105
4. Ran, L., J. Huangfu, H. Chen, X.. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502
5. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and C. Gu, "A candidate three-dimensional GHz lefthanded metamaterial composed of coplanar magnetic and electric resonators," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 183, 2008.
doi:10.1016/j.photonics.2008.08.001
6. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, 041101, 2006.
doi:10.1103/PhysRevB.73.041101
7. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001
8. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114
9. Zhou, J. F., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phys. Lett., Vol. 88, 221103, 2006.
doi:10.1063/1.2208264
10. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563
11. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126
12. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104
13. Sheng, Z. Y. and V. V. Varadan, "Tuning the effective properties of metamaterials by changing the substrate properties," J. Appl. Phys., Vol. 101, 014909, 2007.
doi:10.1063/1.2407275
14. Quan, B. G., C. Li, Q. Sui, J. J.Li, W. M. Liu, F. Li, and C. Z. Gu, "Effects of substrates with different dielectric paramaters on lefthanded frequency of left-handed materials," Chin. Phys. Lett., Vol. 22, No. 5, 1243-1245, 2005.
doi:10.1088/0256-307X/22/5/061
15. Boulais, K. A., D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, "Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs," Appl. Phys. Lett., Vol. 93, 043518, 2008.
doi:10.1063/1.2967192
16. Zhao, Q., L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett., Vol. 90, 011112, 2007.
doi:10.1063/1.2430485
17. Kang, L., Q. Zhao, B. Li, J. Zhou, and H. Zhu, "Experimental verification of a tunable optical negative refraction in nematic liquid crystals," Appl. Phys. Lett., Vol. 90, 181931, 2007.
doi:10.1063/1.2736209
18. Zhang, F., Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D.Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett., Vol. 92, 193104, 2008.
doi:10.1063/1.2926678
19. Wang, X., D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett., Vol. 91, 143122, 2007.
doi:10.1063/1.2795345
20. Wang, D. X., L. X. Ran, H. S. Chen, M. K. Mu, J. A. Kong, and B.-I. Wu, "Active left-handed material collaborated with microwave varactors," Appl. Phys. Lett., Vol. 91, 164101, 2007.
doi:10.1063/1.2799255
21. Chen, H. S., B.-I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.
doi:10.1063/1.2335382
22. Vélez, A., J. Bonache, and F. Martín, "Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 28-30, 2008.
doi:10.1109/LMWC.2007.911983
23. Aydina, K. and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys., Vol. 101, 024911, 2007.
doi:10.1063/1.2427110
24. He, Y. X., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magnetism and Magnetic Materials, Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031
25. Zhao, H. J., J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett., Vol. 91, 131107, 2007.
doi:10.1063/1.2790500
26. Lin, X. Q., T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. P. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett., Vol. 92, 131904, 2008.
doi:10.1063/1.2896308
27. Zhao, Q., B. Du, L. Kang, H. J. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. T. Li, and Y. G. Meng, "Unable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811
28. Wang, J. F., S. B. Qu, Z. Xu, H. Ma, Y. M. Yang, and C. Gu, "A controllable magnetic metamaterial: Split-ring resonator with rotated inner ring," IEEE Trans. Antennas Propgat., Vol. 56, No. 7, 2018-2022, 2008.
doi:10.1109/TAP.2008.924728
29. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562
30. Baena, J. D., R. Marqués, and F. Medina, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, 014402, 2004.
doi:10.1103/PhysRevB.69.014402
31. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608
32. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617