Vol. 12
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-01-16
Wide-Angle Polarization-Independent Planar Left-Handed Metamaterials Based on Dielectric Resonators
By
Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009
Abstract
Based on dielectric resonators, the design and implementation of planar left-handed metamaterials made of dielectric blocks are investigated in this paper. By etching simple metallic patterns on surface of the dielectric blocks, field distributions of the desired resonance modes can be enhanced while those of the undesired are suppressed. In this way, the resonance frequency of the desired mode can be tuned down to lower frequency range. A wide-angle polarization-independent planar left-handed metamaterial based on disk-like dielectric resonators is proposed and analyzed. Such a left-handed metamaterial is independent of the polarization of incident waves. Moreover, its double-negative property keeps almost the same under a wide range of incident angles. At the end, practical implementation of the lefthanded metamaterial by using flexible supporting slabs is given. Due to its polarization-independence, wide range of incident angle and high flexibility, the proposed left-handed metamaterial is ready to be used in various microwave components, such as antenna radomes, microwave filters and frequency selective surfaces.
Citation
Jiafu Wang, Shaobo Qu, Hua Ma, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao, "Wide-Angle Polarization-Independent Planar Left-Handed Metamaterials Based on Dielectric Resonators," Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009.
doi:10.2528/PIERB08121609
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, PIER 84, 279-287, 2008.
doi:10.2528/PIER08062105

4. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, PIER 51, 249-279, 2005.

5. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and Ch. Gu, "A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators," Photon Nanostruct: Fundam Appl., Vol. 6, 183, 2008.
doi:10.1016/j.photonics.2008.08.001

6. Zhou, J. F., L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, Phys. Rev. B, Vol. 73, 041101, 2006.
doi:10.1103/PhysRevB.73.041101

7. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.
doi:10.1364/OL.30.003198

8. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics Nanostruct: Fundam. Appl., Vol. 6, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001

9. Kafesaki, M., I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114

10. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A: Pure Appl. Opt., Vol. 9, 361-365, 2007.
doi:10.1088/1464-4258/9/9/S13

11. Zhou, J. F., Th. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, Appl. Phys. Lett., Vol. 88, 221103, 2006.
doi:10.1063/1.2208264

12. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

13. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126

14. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104

15. Popa, B. I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401

16. Peng, L., L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.
doi:10.1103/PhysRevLett.98.157403

17. Lepetit, T. and E. Akmansoy, "Magnetism in high-contrast dielectric photonic crystals," Microwave Opt. Tech. Lett., Vol. 50, 909-911, 2008.
doi:10.1002/mop.23227

18. Jylha, L., I. Kolmakov, S. Maslovski, and S. Tretyakova, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 2006.
doi:10.1063/1.2173309

19. Kajfez, D. and P. Guillon, , Noble Publishing Corporation, Georgia, 1998.

20. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials ," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

21. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

22. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E, Vol. 68, 065602, 2003.
doi:10.1103/PhysRevE.68.065602